Ngân hàng bài tập

Bài tập tương tự

C

Tính diện tích \(S\) của hình phẳng \((H)\) giới hạn bởi đồ thị hàm số \(y=-x^3+3x^2-2\), hai trục tọa độ và đường thẳng \(x=2\).

\(S=\dfrac{1}{3}\)
\(S=\dfrac{19}{2}\)
\(S=\dfrac{9}{2}\)
\(S=\dfrac{5}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị hàm số $y=\dfrac{x-4}{2x+2}$ cắt trục tung tại điểm có tung độ bằng

$\dfrac{1}{2}$
$-1$
$-2$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình bên.

Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

$(0;-2)$
$(2;0)$
$(-2;0)$
$(0;2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=\dfrac{-x+1}{2x-1}$ có đồ thị $(\mathscr{C})$ và đường thẳng $(d)\colon y=x+m$. Với mọi giá trị thực của $m$ đường thẳng $(d)$ luôn cắt đồ thị $(\mathscr{C})$ tại hai điểm phân biệt $A$ và $B$. Gọi $k_1,\,k_2$ lần lượt là hệ số góc của các tiếp tuyến với $(\mathscr{C})$ tại $A$ và $B$. Giá trị nhỏ nhất của $T=k_1^{2022}+k_2^{2022}$ bằng

$\dfrac{1}{2}$
$2$
$\dfrac{2}{3}$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm các giá trị thực của tham số $m$ để đồ thị hàm số $y=x^4-2mx^2$ có ba điểm cực trị tạo thành một tam giác có diện tích bằng $4\sqrt{2}$.

$m=2$
$m=-2$
$m=\pm2$
$m=32$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=\dfrac{x-1}{x+2}$ tại điểm có tung độ bằng $2$.

$y=-\dfrac{1}{3}x+\dfrac{1}{3}$
$y=\dfrac{1}{3}x+\dfrac{11}{3}$
$y=\dfrac{1}{3}x-\dfrac{11}{3}$
$y=\dfrac{1}{3}x+\dfrac{1}{3}$
1 lời giải Sàng Khôn
Lời giải Tương tự

Cho hàm số $y=\dfrac{2x+1}{x-1}$ có đồ thị là $(\mathscr{C})$. Viết phương trình tiếp tuyến của $(\mathscr{C})$ biết tiếp tuyến vuông góc với đường thẳng có phương trình $x-3y+2019=0$.

1 lời giải Sàng Khôn
Lời giải Tương tự
C

Diện tích hình phẳng giới hạn bởi đồ thị hàm số $y=\mathrm{e}^x$ và các đường thẳng $y=0$, $x=0$, $x=2$ bằng

$\pi\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^x\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^{2x}\mathrm{\,d}x$
$\pi\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^{2x}\mathrm{\,d}x$
$\displaystyle\displaystyle\int\limits_{0}^{2}\mathrm{e}^x\mathrm{\,d}x$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $y=x^4-4x^2+m$. Tìm $m$ để đồ thị của hàm số cắt trục hoành tại $4$ điểm phân biệt sao cho hình phẳng giới hạn bởi đồ thị với trục hoành có diện tích phần phía trên trục hoành bằng diện tích phần phía dưới trục hoành. Khi đó $m=\dfrac{a}{b}$ với $\dfrac{a}{b}$ là phân số tối giản. Tính $a+2b$.

$37$
$38$
$0$
$29$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Tiếp tuyến của đồ thị hàm số \(y=\dfrac{x-2}{2x+1}\) vuông góc với đường thẳng \(y=-\dfrac{1}{5}x\) là

\(y=5x+3\) và \(y=5x-2\)
\(y=5x-8\) và \(y=5x-2\)
\(y=5x+8\) và \(y=5x-2\)
\(y=5x+8\) và \(y=5x+2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tất cả các phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x+1}{x-1}\) song song với đường thẳng \(y=-3x+15\).

\(y=-3x+1\), \(y=-3x-7\)
\(y=-3x-1\), \(y=-3x+11\)
\(y=-3x-1\)
\(y=-3x+11\), \(y=-3x+5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Viết phương trình tiếp tuyến của đồ thị \(y=\dfrac{x-1}{x+1}\), biết tiếp tuyến có hệ số góc là \(\dfrac{1}{2}\).

\(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\)
\(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\)
\(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\)
\(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Phương trình tiếp tuyến với đồ thị hàm số \(y=\dfrac{2x-4}{x-4}\) tại điểm có tung độ bằng \(3\) là

\(x+4y-20=0\)
\(x+4y-5=0\)
\(4x+y-2=0\)
\(4x+y-5=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tiếp tuyến của đồ thị hàm số \(y=\dfrac{4}{x-1}\) tại điểm có hoành độ \(x_0=-1\) là

\(y=-x-3\)
\(y=x-1\)
\(y=-x+2\)
\(y=-x-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x-1}{x+1}\) tại điểm \(M(0;-1)\) là

\(y=3x+1\)
\(y=3x-1\)
\(y=-3x-1\)
\(y=-3x+1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiếp tuyến của đồ thị hàm số \(y=\dfrac{x+1}{x-5}\) tại điểm \(A(-1;0)\) có hệ số góc bằng

\(\dfrac{1}{6}\)
\(-\dfrac{1}{6}\)
\(\dfrac{6}{25}\)
\(-\dfrac{6}{25}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tìm tọa độ giao điểm \(M\) của đồ thị hàm số \(y=\dfrac{2x-1}{x+2}\) với trục tung.

\(M\left(\dfrac{1}{2};0\right)\)
\(M\left(0;2\right)\)
\(M\left(0;-\dfrac{1}{2}\right)\)
\(M\left(-\dfrac{1}{2};0\right)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết rằng đồ thị hàm số \(y=\dfrac{(m-2n-3)x+5}{x-m-n}\) nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng \(S=m^2+n^2-2\).

\(S=2\)
\(S=0\)
\(S=-1\)
\(S=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính diện tích hình phẳng giới hạn bởi \(\left(\mathscr{C}\right)\colon y=x^4-2x^2+1\) và trục hoành.

\(\dfrac{8}{15}\)
\(-\dfrac{15}{16}\)
\(\dfrac{15}{8}\)
\(\dfrac{16}{15}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính diện tích hình phẳng giới hạn bởi các đường \(y=-x^2+4x-3\), \(x=0\), \(x=3\), \(Ox\).

\(-\dfrac{8}{3}\)
\(-\dfrac{4}{3}\)
\(\dfrac{4}{3}\)
\(\dfrac{8}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự