Ngân hàng bài tập

Bài tập tương tự

S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.

$\dfrac{a\sqrt{3}}{4}$
$\dfrac{a\sqrt{3}}{2}$
$a\sqrt{3}$
$\dfrac{a\sqrt{3}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng

$\dfrac{\sqrt{3}}{4}a^3$
$\dfrac{\sqrt{3}}{2}a^3$
$\dfrac{3\sqrt{3}}{4}a^3$
$\dfrac{3\sqrt{3}}{2}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.

$\dfrac{a\sqrt{3}}{4}$
$\dfrac{a\sqrt{3}}{2}$
$a\sqrt{3}$
$\dfrac{a\sqrt{3}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp \(S.ABC\) có ba cạnh \(AS,\,AB,\,AC\) đôi một vuông góc và có độ dài bằng \(a\sqrt{2}\).

  1. Tính thể tích khối chóp
  2. Tính khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\).
3 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, cạnh \(a\). Cạnh bên \(SA=a\sqrt{3}\) và vuông góc với mặt đáy. Tính:

  1. Thể tích của khối chóp
  2. Khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\).
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(1;2;1)\), \(B(2;1;3)\), \(C(3;2;2)\), \(D(1;1;1)\). Độ dài chiều cao \(DH\) của tứ diện bằng

\(\dfrac{\sqrt{14}}{14}\)
\(\dfrac{3\sqrt{14}}{14}\)
\(\dfrac{3\sqrt{14}}{7}\)
\(\dfrac{4\sqrt{14}}{7}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy là tam giác vuông cân tại $B$, $AB=2a$ và $SA$ vuông góc với mặt phẳng đáy. Khoảng cách từ $C$ đến mặt phẳng $(SAB)$ bằng

$\sqrt2a$
$2a$
$a$
$2\sqrt2a$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A\), \(AB=2a\), \(AC=4a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=a\) (minh họa như hình vẽ). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SM\) và \(BC\) bằng

\(\dfrac{2a}{3}\)
\(\dfrac{a\sqrt{6}}{3}\)
\(\dfrac{a\sqrt{3}}{3}\)
\(\dfrac{a}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là

$\dfrac{3a^3}{16}$
$\dfrac{a^3}{16}$
$\dfrac{a^3\sqrt{3}}{16}$
$\dfrac{3\sqrt{3}a^3}{16}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối hộp $ABCD.A'B'C'D'$ có thể tích bằng $6a^3$ và diện tích tam giác $A'BD$ bằng $a^2$. Khoảng cách từ điểm $A$ đến mặt phẳng $(B'CD')$ bằng

$6a$
$2a$
$3a$
$a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$ và có $AB=a$, $BC=a\sqrt{3}$. Mặt bên $(SAB)$ là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng $(ABC)$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABC$.

$V=\dfrac{a^3\sqrt{6}}{12}$
$V=\dfrac{a^3\sqrt{6}}{4}$
$V=\dfrac{a^3\sqrt{6}}{6}$
$V=\dfrac{a^3\sqrt{6}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$ và cạnh bên $SB$ vuông góc với mặt phẳng đáy. Tính chiều cao $h$ của khối chóp, biết rằng thể tích $V=\dfrac{a^3\sqrt{2}}{3}$.

$h=a\sqrt{2}$
$h=3a\sqrt{2}$
$h=a\sqrt{3}$
$h=\dfrac{a\sqrt{2}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA$ vuông góc với mặt phẳng đáy, góc giữa $SA$ và mặt phẳng $(SBC)$ bằng $45^\circ$ (tham khảo hình bên).

Thể tích của khối chóp $S.ABC$ bằng

$\dfrac{a^3}{8}$
$\dfrac{3a^3}{8}$
$\dfrac{\sqrt{3}a^3}{12}$
$\dfrac{a^3}{4}$
1 lời giải Sàng Khôn
Lời giải Tương tự

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a\), cạnh bên \(SA=2a\) và vuông góc với mặt đáy. Gọi \(M,\,N\) lần lượt là hình chiếu vuông góc của \(A\) trên các đường thẳng \(SB\), \(SC\).

Tính thể tích của khối chóp \(A.BCNM\).

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho khối chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $2a\sqrt{3}$ và $SA$ vuông góc với mặt phẳng $(ABC)$. Biết rằng thể tích của khối chóp $S.ABC$ bằng $\sqrt{3}a^3$. Tính độ dài cạnh $SA$.

$2a\sqrt{3}$
$\sqrt{3}$
$2a$
$a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(4a\), \(SA\) vuông góc với mặt phẳng đáy, góc giữa mặt phẳng \(\left(SBC\right)\) và mặt phẳng đáy bằng \(60^\circ\). Diện tích của mặt cầu ngoại tiếp hình chóp \(S.ABC\) bằng

\(\dfrac{172\pi a^2}{3}\)
\(\dfrac{76\pi a^2}{3}\)
\(84\pi a^2\)
\(\dfrac{172\pi a^2}{9}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), \(SA=a\) và \(SA\) vuông góc với đáy. Gọi \(M\) là trung điểm của \(SB\), \(N\) thuộc cạnh \(SD\) sao cho \(SN=2ND\). Tính thể tích \(V\) của khối tứ diện \(ACMN\).

\(V=\dfrac{1}{12}a^3\)
\(V=\dfrac{1}{36}a^3\)
\(V=\dfrac{1}{8}a^3\)
\(V=\dfrac{1}{6}a^3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho khối chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông cân tại \(A\), \(AB=a\), \(\widehat{SBA}=\widehat{SCA}=90^\circ\), góc giữa hai mặt phẳng \(\left(SAB\right)\) và \(\left(SAC\right)\) bằng \(60^\circ\). Thể tích khối chóp đã cho bằng

\(a^3\)
\(\dfrac{a^3}{3}\)
\(\dfrac{a^3}{2}\)
\(\dfrac{a^3}{6}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).

Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng

$\dfrac{\sqrt{3}}{3}a$
$\sqrt{2}a$
$\dfrac{2\sqrt{3}}{3}a$
$\dfrac{\sqrt{2}}{2}a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật, $SA\bot (ABCD)$, $AB=a$ và $SB=\sqrt{2}a$. Khoảng cách từ điểm $S$ đến mặt phẳng $(ABCD)$ bằng

$a$
$\sqrt{2}a$
$2a$
$\sqrt{3}a$
1 lời giải Sàng Khôn
Lời giải Tương tự