Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
$m=1$ | |
$m=4$ | |
$m=13$ | |
$m=8$ |
Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.
$m\geq2$ | |
$m\leq2$ | |
$m=2$ | |
$m>2$ |
Tìm \(m\) để bất phương trình \(x+\dfrac{4}{x-1}\geq m\) có nghiệm trên khoảng \((-\infty;1)\).
\(m\leq3\) | |
\(m\leq-3\) | |
\(m\leq5\) | |
\(m\leq-1\) |
Cho \(M\), \(N\) là các số thực, xét hàm số \(f(x)=M\sin\pi x+N\cos\pi x\) thỏa mãn \(f(1)=3\) và \(\displaystyle\int\limits_0^{\tfrac{1}{2}}f(x)\mathrm{\,d}x=-\dfrac{1}{\pi}\). Giá trị của \(f'\left(\dfrac{1}{4}\right)\) bằng
\(\dfrac{5\pi\sqrt{2}}{2}\) | |
\(-\dfrac{5\pi\sqrt{2}}{2}\) | |
\(-\dfrac{\pi\sqrt{2}}{2}\) | |
\(\dfrac{\pi\sqrt{2}}{2}\) |
Tính tổng các nghiệm thuộc $\left[-2\pi;2\pi\right]$ của phương trình $\sin^2x+\cos2x+2\cos x=0$.
$2\pi$ | |
$\dfrac{2\pi}{3}$ | |
$\dfrac{\pi}{3}$ | |
$0$ |
Phương trình $\left(2\sin x+1\right)\left(4\cos4x+2\sin x\right)+4\cos^2x=3$ tương đương với phương trình nào trong các phương trình được cho dưới đây?
$\left(4\cos x-1\right)\left(2\sin x+1\right)=0$ | |
$\left(4\cos4x-1\right)\left(2\sin x+1\right)=0$ | |
$\left(4\cos x+1\right)\left(2\sin x+1\right)=0$ | |
$\left(4\cos4x+1\right)\left(2\sin x+1\right)=0$ |
Tính tổng các nghiệm của phương trình $2\cos^2x+5\sin x-4=0$ trong $[0;2\pi]$.
$0$ | |
$\dfrac{8\pi}{3}$ | |
$\pi$ | |
$\dfrac{5\pi}{6}$ |
Tổng các nghiệm của phương trình $\sin^22x+\cos^23x=1$ trên khoảng $0< x<\pi$ là
$0$ | |
$\dfrac{\pi}{5}$ | |
$\pi$ | |
$2\pi$ |
Phương trình $3\cos x+\cos2x-\cos3x+1=2\sin x\sin2x$ có $\alpha$ là nghiệm lớn nhất thuộc khoảng $(0;2\pi)$. Tìm $\sin2\alpha$.
$\dfrac{1}{2}$ | |
$1$ | |
$-\dfrac{1}{2}$ | |
$0$ |
Phương trình $\sqrt{3}\sin2x-2\cos^2x=0$ có tập nghiệm được biểu diễn bởi bao nhiêu điểm trên đường tròn lượng giác?
$3$ | |
$2$ | |
$6$ | |
$4$ |
Tìm đạo hàm của hàm số $y=\dfrac{\cos4x}{2}+3\sin4x$.
$y'=12\cos4x-2\sin4x$ | |
$y'=12\cos4x+2\sin4x$ | |
$y'=-12\cos4x+2\sin4x$ | |
$y'=3\cos4x-\dfrac{1}{2}\sin4x$ |
Tìm đạo hàm của hàm số sau $y=\dfrac{\sin x}{\sin x-\cos x}$.
$y'=\dfrac{-1}{\left(\sin x-\cos x\right)^2}$ | |
$y'=\dfrac{1}{\left(\sin x-\cos x\right)^2}$ | |
$y'=\dfrac{-1}{\left(\sin x+\cos x\right)^2}$ | |
$y'=\dfrac{1}{\left(\sin x+\cos x\right)^2}$ |
Tìm đạo hàm của hàm số $f\left(x\right)=\sin^22x-\cos3x$.
$f'\left(x\right)=2\sin4x-3\sin3x$ | |
$f'\left(x\right)=2\sin4x+3\sin3x$ | |
$f'\left(x\right)=\sin4x+3\sin3x$ | |
$f'\left(x\right)=2\sin2x+3\sin3x$ |
Tìm đạo hàm $y'$ của hàm số $y=\sin x+\cos x$.
$y'=2\cos x$ | |
$y'=2\sin x$ | |
$y'=\sin x-\cos x$ | |
$y'=\cos x-\sin x$ |
Tìm đạo hàm của hàm số $y=2\sin3x+\cos2x$.
$y'=6\cos3x-2\sin2x$ | |
$y'=2\cos3x+\sin2x$ | |
$y'=-6\cos3x+2\sin2x$ | |
$y'=2\cos3x-\sin2x$ |
Hàm số nào sau đây không có đạo hàm trên $\mathbb{R}$?
$y=\left|x-1\right|$ | |
$y=\sqrt{x^2-4x+5}$ | |
$y=\sin x$ | |
$y=\sqrt{2-\cos x}$ |
Tính $f'\left(\dfrac{\pi}{2}\right)$ biết $f\left(x\right)=\dfrac{\cos x}{1+\sin x}$.
$-2$ | |
$\dfrac{1}{2}$ | |
$0$ | |
$-\dfrac{1}{2}$ |
Đạo hàm của hàm số $y=\dfrac{\sin^2x-\cos^2x}{\sin x\cdot\cos x}$ tại điểm $x=\dfrac{\pi}{6}$ bằng
$-\dfrac{8}{3}$ | |
$\dfrac{8}{3}$ | |
$\dfrac{16}{3}$ | |
$-\dfrac{16}{3}$ |
Cho hàm số $y=\dfrac{\sin x-\cos x+\sqrt{2}}{\sin x+\cos x+2}$. Giả sử hàm số có giá trị lớn nhất là $M$, giá trị nhỏ nhất là $N$. Khi đó, giá trị của $2M+N$ là
$4\sqrt{2}$ | |
$2\sqrt{2}$ | |
$4$ | |
$\sqrt{2}$ |
Hàm số \(y=5+4\sin2x\cos2x\) có tất cả bao nhiêu giá trị nguyên?
\(3\) | |
\(4\) | |
\(5\) | |
\(6\) |