Ngân hàng bài tập

Bài tập tương tự

SS

Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.

Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?

$3$
$4$
$1$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đạo hàm liên tục trên $\mathbb{R}$, đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Giá trị lớn nhất của hàm số $g(x)=2f(x)-(x-1)^2$ trên đoạn $[-1;2]$ bằng

$2f(0)-1$
$2f(-1)-4$
$2f(1)$
$2f(2)-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ liên tục trên $\mathbb{R}$ có đồ thị $y=f'(x)$ cho như hình vẽ.

Giá trị nhỏ nhất của hàm số $y=f(x)+\dfrac {1}{3}x^3-x$ trên đoạn $[-1;2]$ bằng

$f(2)+\dfrac{2}{3}$
$f(-1)+\dfrac{2}{3}$
$\dfrac{2}{3}$
$f(1)-\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$ có đồ thị $f'(x)$ như hình vẽ.

Trên đoạn $[-4;3]$, hàm số $g(x)=2f(x)+(1-x)^2$ đạt giá trị nhỏ nhất tại điểm

$x_0=-4$
$x_0=-1$
$x_0=3$
$x_0=-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$. Đồ thị của hàm số $y=f'(x)$ như hình vẽ.

Đặt $h(x)=f(x)-x$. Mệnh đề nào dưới đây đúng?

$\min\limits_{[-2;2]}h(x)=h(-2)$
$\max\limits_{[0;4]}h(x)=h(0)$
$\min\limits_{[-1;2]}h(x)=h(-1)$
$h(2)< h(4)< h(0)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.

$m=1$
$m=4$
$m=13$
$m=8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.

$m\geq2$
$m\leq2$
$m=2$
$m>2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)$, đồ thị của hàm số $y=f'(x)$ là đường cong trong hình bên.

Giá trị lớn nhất của hàm số $g(x)=f(2x)-4x$ trên đoạn $\left[-\dfrac{3}{2};2\right]$ bằng

$f(0)$
$f(-3)+6$
$f(2)-4$
$f(4)-8$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Tìm \(m\) để bất phương trình \(x+\dfrac{4}{x-1}\geq m\) có nghiệm trên khoảng \((-\infty;1)\).

\(m\leq3\)
\(m\leq-3\)
\(m\leq5\)
\(m\leq-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ liên tục và có bảng biến thiên trên đoạn $[-1;3]$ như hình vẽ.

Khẳng định nào sau đây đúng?

$\max\limits_{[-1;3]}f(x)=f(0)$
$\max\limits_{[-1;3]}f(x)=f(3)$
$\max\limits_{[-1;3]}f(x)=f(-1)$
$\max\limits_{[-1;3]}f(x)=f(2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên trên đoạn $[-1;3]$ như sau:

Giá trị lớn nhất của hàm số đã cho trên đoạn $[-1;3]$ bằng

$1$
$4$
$0$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ sau:

Giá trị lớn nhất của hàm số $g(x)=f\big(4x-x^2\big)+\dfrac{x^3}{3}-3x^2+8x+\dfrac{1}{3}$ trên đoạn $[1;3]$ bằng

$15$
$\dfrac{25}{3}$
$\dfrac{19}{3}$
$12$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?

$12$
$11$
$6$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Có bao nhiêu giá trị nguyên thuộc đoạn $[-10;10]$ của $m$ để giá trị lớn nhất của hàm số $y=\dfrac{2x+m}{x+1}$ trên đoạn $[-4;-2]$ không lớn hơn $1$?

$6$
$7$
$8$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)=\left|x^4-4x^3+4x^2+a\right|$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn $[0;2]$. Có bao nhiêu số nguyên $a$ thuộc đoạn $[-3;2]$ sao cho $M\leq2m$?

$7$
$5$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Giá trị lớn nhất của hàm số $y=f(x)$ trên đoạn $[-1;1]$ bằng

$1$
$3$
$-1$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{x+m}{x+1}$ với $m$ là tham số thực. Tìm giá trị của $m$ thỏa mãn $\min\limits_{[1;2]}f(x)+\min\limits_{[1;2]}f(x)=\dfrac{16}{3}$.

$m=5$
$m=\dfrac{5}{6}$
$m=-5$
$m=\dfrac{5}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{x+m}{x-1}$ với $m$ là tham số thực. Gọi $m$ là giá trị thỏa mãn $\min\limits_{[2;4]}=3$, mệnh đề nào sau đây là đúng?

$3< m\leq4$
$1\leq m<3$
$m>4$
$m<-1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{x-m^2}{x+8}$ với $m$ là tham số thực. Tìm giá trị lớn nhất của $m$ để hàm số có giá trị nhỏ nhất trên đoạn $[0;3]$ bằng $-2$.

$m=-4$
$m=5$
$m=1$
$m=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.

$m=-4$
$m=-2$
$m=2$
$m=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự