Trong không gian \(Oxyz\), mặt phẳng \((P)\colon x+\sqrt{2}y-z+3=0\) cắt mặt cầu \((S)\colon x^2+y^2+z^2=5\) theo giao tuyến là đường tròn có diện tích là
\(\dfrac{7\pi}{4}\) | |
\(\dfrac{15\pi}{4}\) | |
\(\dfrac{9\pi}{4}\) | |
\(\dfrac{11\pi}{4}\) |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+3)^2+y^2+(z-1)^2=10$. Mặt phẳng nào trong các mặt phẳng dưới đây cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính bằng $3$?
$\big(P_2\big)\colon x+2y-2z-8=0$ | |
$\big(P_4\big)\colon x+2y-2z-4=0$ | |
$\big(P_3\big)\colon x+2y-2z-2=0$ | |
$\big(P_1\big)\colon x+2y-2z+8=0$ |
Trong không gian $Oxyz$, mặt phẳng $x+\sqrt{2}y-z+3=0$ cắt mặt cầu $x^2+y^2+z^2=5$ theo giao tuyến là một đường tròn. Chu vi đường tròn đó bằng
$\pi\sqrt{11}$ | |
$3\pi$ | |
$\pi\sqrt{15}$ | |
$\pi\sqrt{7}$ |
Trong không gian \(Oxyz\), mặt cầu tâm \(I\left(1;2;-1\right)\) và cắt mặt phẳng \(\left(P\right)\colon x-2y-2z-8=0\) theo một đường tròn có bán kính bằng \(4\) có phương trình là
\(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=5\) | |
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\) | |
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\) | |
\(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=3\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2+4x-2y+6z-11=0\) và mặt phẳng \((P)\colon x-2y+2z+1=0\). Gọi \((C)\) là đường tròn giao tuyến của \((P)\) và \((S)\). Tính chu vi đường tròn \((C)\).
\(10\pi\) | |
\(4\pi\) | |
\(6\pi\) | |
\(8\pi\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-y-z+6=0\) và \((Q)\colon2x+3y-2z+1=0\). Gọi \((S)\) là mặt cầu có tâm thuộc \((Q)\) và cắt \((P)\) theo giao tuyến là đường tròn tâm \(E(-1;2;3)\), bán kính \(r=8\). Phương trình mặt cầu \((S)\) là
\(x^2+(y+1)^2+(z+2)^2=64\) | |
\(x^2+(y-1)^2+(z-2)^2=67\) | |
\(x^2+(y-1)^2+(z+2)^2=3\) | |
\(x^2+(y+1)^2+(z-2)^2=64\) |
Trong không gian \(Oxyz\), cho điểm \(I(-3;0;1)\). Mặt cầu \((S)\) có tâm \(I\) và cắt mặt phẳng \((P)\colon x-2y-2z-1=0\) theo một thiết diện là hình tròn. Biết rằng diện tích của hình tròn này bằng \(\pi\). Phương trình mặt cầu \((S)\) là
\((x+3)^2+y^2+(z-1)^2=4\) | |
\((x+3)^2+y^2+(z-1)^2=25\) | |
\((x+3)^2+y^2+(z-1)^2=5\) | |
\((x+3)^2+y^2+(z-1)^2=2\) |
Trong không gian \(Oxyz\), cho mặt phẳng \(\left(\alpha \right)\colon4x-3y+2z+28=0\) và điểm \(I\left(0;1;2\right)\). Viết phương trình của mặt cầu \(\left(S\right)\) có tâm \(I\) và tiếp xúc với mặt phẳng \(\left(\alpha\right)\).
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=29\) | |
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=\sqrt{29}\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=841\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=29\) |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I(3;-1;0)\) và tiếp xúc với mặt phẳng \((P)\colon x+2y-2z-10=0\)?
\((x-3)^2+(y+1)^2+z^2=9\) | |
\((x-3)^2+(y+1)^2+z^2=\dfrac{1}{9}\) | |
\((x+3)^2+(y-1)^2+z^2=9\) | |
\((x+3)^2+(y-1)^2+z^2=\dfrac{1}{9}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=16\) và các điểm \(A\left(1;0;2\right)\), \(B\left(-1;2;2\right)\). Gọi \((P)\) là mặt phẳng đi qua hai điểm \(A,\,B\) sao cho thiết diện của mặt phẳng \((P)\) với mặt cầu \((S)\) có diện tích nhỏ nhất. Khi viết phương trình \((P)\) dưới dạng \(ax+by+cx+3=0\). Tính tổng \(T=a+b+c\).
\(-2\) | |
\(-3\) | |
\(0\) | |
\(3\) |
Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là
\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\) | |
\(x^2+y^2+z^2+2y-60=0\) | |
\(x^2+y^2+z^2-2y+55=0\) | |
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon x-2y+2z-2=0\) và điểm \(I(-1;2;-1)\). Viết phương trình mặt cầu \((S)\) tâm \(I\), cắt mặt phẳng \((P)\) theo giao tuyến là một đường tròn có bán kính bằng \(5\).
\((S)\colon(x+1)^2+(y-2)^2+(z+1)^2=34\) | |
\((S)\colon(x-1)^2+(y+2)^2+(z-1)^2=34\) | |
\((S)\colon(x+1)^2+(y-2)^2+(z+1)^2=16\) | |
\((S)\colon(x+1)^2+(y-2)^2+(z+1)^2=25\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon(x-1)^2+(y-1)^2+(z-1)^2=25\) có tâm \(I\) và mặt phẳng \((P)\colon x+2y+2z+7=0\). Thể tích của khối nón có đỉnh \(I\) và đáy là giao tuyến của mặt cầu \((S)\) và mặt phẳng \((P)\) bằng
\(12\pi\) | |
\(48\pi\) | |
\(36\pi\) | |
\(24\pi\) |
Trong không gian \(Oxyz\), cho đường tròn \((\mathscr{C})\) có tâm \(H(-1;1;1)\), bán kính \(r=2\) nằm trên mặt phẳng \((P)\colon x-2y+2z+1=0\). Diện tích của mặt cầu có tâm thuộc mặt phẳng \((Q)\colon x+y+z=0\) và chứa đường tròn \((C)\) bằng
\(26\pi\) | |
\(2\pi\) | |
\(52\pi\) | |
\(40\pi\) |
Trong không gian \(Oxyz\), khoảng cách từ tâm \(I\) của mặt cầu \((S)\colon x^2+y^2+(z-1)^2=4\) đến mặt phẳng \((P)\colon2x+2y-z+3=0\) bằng
\(\dfrac{2}{9}\) | |
\(\dfrac{2}{3}\) | |
\(\dfrac{3}{2}\) | |
\(2\) |
Trong không gian $Oxyz$, cho $(S)\colon x^2+y^2+z^2-4x-2y+10z-14=0$. Mặt phẳng $(P)\colon-x+4z+5=0$ cắt mặt cầu $(S)$ theo một đường tròn $(\mathscr{C})$. Tọa độ tâm $H$ của $(\mathscr{C})$ là
$H(1;1;-1)$ | |
$H(-3;1;-2)$ | |
$H(9;1;1)$ | |
$H(-7;1;-3)$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon x^2+y^2+z^2+4x-8y+2z+1=0$ và mặt phẳng $(P)\colon2x+y+3z-3=0$. Biết $(P)$ cắt $(S)$ theo giao tuyến là một đường tròn, tìm tọa độ tâm $I$ và bán kính $r$ của đường tròn đó.
$I\left(\dfrac{8}{7};\dfrac{25}{7};-\dfrac{16}{7}\right)$ và $r=\dfrac{2\sqrt{854}}{3}$ | |
$I\left(\dfrac{8}{7};-\dfrac{31}{7};-\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{5}$ | |
$I\left(-\dfrac{8}{7};\dfrac{31}{7};\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{7}$ | |
$I\left(-\dfrac{8}{7};\dfrac{31}{7};\dfrac{2}{7}\right)$ và $r=\dfrac{\sqrt{854}}{3}$ |
Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.
\(M\left(0;0;1\right)\) | |
\(M\left(2;-4;-1\right)\) | |
\(M\left(4;0;3\right)\) | |
\(M\left(0;-1;0\right)\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2-6x+4y-12=0\). Mặt phẳng nào sau đây cắt \((S)\) theo giao tuyến là một đường tròn có bán kính \(r=3\)?
\((\alpha)\colon x+y+z+\sqrt{3}=0\) | |
\((\beta)\colon2x+2y-z+12=0\) | |
\((\gamma)\colon4x-3y-z-4\sqrt{26}=0\) | |
\((\lambda)\colon3x-4y+5z-17+20\sqrt{2}=0\) |
Trong không gian \(Oxyz\), cho mặt phẳng \((P)\colon3x+y-3z+6=0\) và mặt cầu \((S)\colon(x-4)^2+(y+5)^2+(z+2)^2=25\). Biết \((P)\) cắt \((S)\) theo giao tuyến là một đường tròn bán kính \(r\). Chọn phát biểu đúng.
\(r=6\) | |
\(r=5\) | |
\(r=\sqrt{6}\) | |
\(r=\sqrt{5}\) |