Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.
\(M\left(0;0;1\right)\) | |
\(M\left(2;-4;-1\right)\) | |
\(M\left(4;0;3\right)\) | |
\(M\left(0;-1;0\right)\) |
Trong không gian $Oxyz$, cho hai điểm $M(-2;-2;1)$, $A(1;2;-3)$ và đường thẳng $d\colon\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Gọi $\overrightarrow{u}=(1;a;b)$ là một vectơ chỉ phương của đường thẳng $\Delta$ đi qua $M$, $\Delta$ vuông góc với đường thẳng $d$ đồng thời cách điểm $A$ một khoảng nhỏ nhất. Giá trị của $a+2b$ là
$1$ | |
$2$ | |
$3$ | |
$4$ |
Trong không gian $Oxyz$ cho hai điểm $A(1;2;-3)$, $M(-2;-2;1)$ và đường thẳng $d$ có phương trình $\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Phương trình đường thẳng $d'$ đi qua $M$ và vuông góc với $d$ sao cho khoảng cách từ điểm $A$ đến $d'$ nhỏ nhất là
$\begin{cases}x=-2+t\\ y=-2\\ z=1+t\end{cases}$ | |
$\begin{cases}x=-2\\ y=-2+t\\ z=1+2t\end{cases}$ | |
$\begin{cases}x=-2+t\\ y=-2-t\\ z=1\end{cases}$ | |
$\begin{cases}x=-2+t\\ y=-2\\ z=1+2t\end{cases}$ |
Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là
\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\) | |
\(x^2+y^2+z^2+2y-60=0\) | |
\(x^2+y^2+z^2-2y+55=0\) | |
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\) |
Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-y-z+6=0\) và \((Q)\colon2x+3y-2z+1=0\). Gọi \((S)\) là mặt cầu có tâm thuộc \((Q)\) và cắt \((P)\) theo giao tuyến là đường tròn tâm \(E(-1;2;3)\), bán kính \(r=8\). Phương trình mặt cầu \((S)\) là
\(x^2+(y+1)^2+(z+2)^2=64\) | |
\(x^2+(y-1)^2+(z-2)^2=67\) | |
\(x^2+(y-1)^2+(z+2)^2=3\) | |
\(x^2+(y+1)^2+(z-2)^2=64\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon x^2+y^2+z^2-2y-2z-1=0\) và mặt phẳng \((P)\colon2x+2y-2z+15=0\). Tính khoảng cách ngắn nhất giữa điểm \(M\in(S)\) và điểm \(N\in(P)\).
\(\dfrac{3\sqrt{3}}{2}\) | |
\(\dfrac{3\sqrt{2}}{3}\) | |
\(\dfrac{3}{2}\) | |
\(\dfrac{2}{3}\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon(x-2)^2+(y-3)^2+(z-5)^2=100\) và điểm \(M(-3;3;-3)\) nằm trên mặt phẳng \((\alpha)\colon2x-2y+z+15=0\). Đường thẳng \(\Delta\) nằm trên mặt phẳng \((\alpha)\), đi qua \(M\) và cắt mặt cầu \((S)\) tại hai điểm \(A,\,B\) sao cho đoạn thẳng \(AB\) có độ dài lớn nhất. Viết phương trình đường thẳng \(\Delta\).
\(\dfrac{x+3}{1}=\dfrac{y-3}{1}=\dfrac{z+3}{3}\) | |
\(\dfrac{x+3}{16}=\dfrac{y-3}{11}=\dfrac{z+3}{-10}\) | |
\(\dfrac{x+3}{5}=\dfrac{y-3}{1}=\dfrac{z+3}{8}\) | |
\(\dfrac{x+3}{1}=\dfrac{y-3}{4}=\dfrac{z+3}{6}\) |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-1)^2+(y+2)^2+(z+1)^2=4$ và đường thẳng $d$ đi qua điểm $A(1;0;-2)$, nhận $\overrightarrow{u}=(1;a;1-a)$ (với $a\in\mathbb{R}$) làm vectơ chỉ phương. Biết rằng $d$ cắt $(S)$ tại hai điểm phân biệt mà các tiếp diện của $(S)$ tại hai điểm đó vuông góc với nhau. Hỏi $a^2$ thuộc khoảng nào dưới đây?
$\left(\dfrac{1}{2};\dfrac{3}{2}\right)$ | |
$\left(\dfrac{3}{2};2\right)$ | |
$\left(7;\dfrac{15}{2}\right)$ | |
$\left(0;\dfrac{1}{4}\right)$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+3)^2+y^2+(z-1)^2=10$. Mặt phẳng nào trong các mặt phẳng dưới đây cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính bằng $3$?
$\big(P_2\big)\colon x+2y-2z-8=0$ | |
$\big(P_4\big)\colon x+2y-2z-4=0$ | |
$\big(P_3\big)\colon x+2y-2z-2=0$ | |
$\big(P_1\big)\colon x+2y-2z+8=0$ |
Trong không gian $Oxyz$, cho điểm $A(1;2;-2)$. Gọi $(P)$ là mặt phẳng chứa trục $Ox$ sao cho khoảng cách từ $A$ đến $(P)$ lớn nhất. Phương trình của $(P)$ là
$2y+z=0$ | |
$2y-z=0$ | |
$y+z=0$ | |
$y-z=0$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-4)^2+(y+3)^2+(z+6)^2=50$ và đường thẳng $d\colon\dfrac{x}{2}=\dfrac{y+2}{4}=\dfrac{z-3}{-1}$. Có bao nhiêu điểm $M$ thuộc trục hoành, với hoành độ là số nguyên, mà từ $M$ kẻ được đến $(S)$ hai tiếp tuyến cùng vuông góc với $d$?
$29$ | |
$33$ | |
$55$ | |
$28$ |
Trong không gian $Oxyz$, mặt phẳng $x+\sqrt{2}y-z+3=0$ cắt mặt cầu $x^2+y^2+z^2=5$ theo giao tuyến là một đường tròn. Chu vi đường tròn đó bằng
$\pi\sqrt{11}$ | |
$3\pi$ | |
$\pi\sqrt{15}$ | |
$\pi\sqrt{7}$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x-3)^2+(y-2)^2+(z-6)^2=56$ và đường thẳng $\Delta\colon\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-5}{1}$. Biết rằng đường thẳng $\Delta$ cắt $(S)$ tại điểm $A\left(x_0;y_0;z_0\right)$ với $x_0>0$. Giá trị của $y_0+z_0-2x_0$ bằng
$30$ | |
$-1$ | |
$9$ | |
$2$ |
Trong không gian \(Oxyz\), mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-2x+4y-4=0\) cắt mặt phẳng \(\left(P\right)\colon x+y-z+4=0\) theo giao tuyến là đường tròn \(\left(\mathscr{C}\right)\). Tính diện tích \(S\) của hình tròn \(\left(\mathscr{C}\right)\).
\(S=\dfrac{2\pi\sqrt{78}}{3}\) | |
\(S=2\pi\sqrt{6}\) | |
\(S=6\pi\) | |
\(S=\dfrac{26\pi}{3}\) |
Trong không gian \(Oxyz\), mặt cầu tâm \(I\left(1;2;-1\right)\) và cắt mặt phẳng \(\left(P\right)\colon x-2y-2z-8=0\) theo một đường tròn có bán kính bằng \(4\) có phương trình là
\(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=5\) | |
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\) | |
\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\) | |
\(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=3\) |
Trong không gian \(Oxyz\), cho mặt phẳng \(\left(\alpha \right)\colon4x-3y+2z+28=0\) và điểm \(I\left(0;1;2\right)\). Viết phương trình của mặt cầu \(\left(S\right)\) có tâm \(I\) và tiếp xúc với mặt phẳng \(\left(\alpha\right)\).
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=29\) | |
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=\sqrt{29}\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=841\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=29\) |
Trong không gian \(Oxyz\), mặt phẳng \((P)\colon x+\sqrt{2}y-z+3=0\) cắt mặt cầu \((S)\colon x^2+y^2+z^2=5\) theo giao tuyến là đường tròn có diện tích là
\(\dfrac{7\pi}{4}\) | |
\(\dfrac{15\pi}{4}\) | |
\(\dfrac{9\pi}{4}\) | |
\(\dfrac{11\pi}{4}\) |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I(3;-1;0)\) và tiếp xúc với mặt phẳng \((P)\colon x+2y-2z-10=0\)?
\((x-3)^2+(y+1)^2+z^2=9\) | |
\((x-3)^2+(y+1)^2+z^2=\dfrac{1}{9}\) | |
\((x+3)^2+(y-1)^2+z^2=9\) | |
\((x+3)^2+(y-1)^2+z^2=\dfrac{1}{9}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt phẳng \(\left(P\right)\colon x+y-2z+3=0\) và điểm \(I\left(1;1;0\right)\). Phương trình mặt cầu tâm \(I\) và tiếp xúc với \(\left(P\right)\) là
\(\left(x+1\right)^2+\left(y+1\right)^2+z^2=\dfrac{25}{6}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{5}{\sqrt{6}}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{5}{6}\) | |
\(\left(x-1\right)^2+\left(y-1\right)^2+z^2=\dfrac{25}{6}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho \((\alpha)\) là mặt phẳng chứa trục \(Oy\) và cách \(A(1;3;5)\) một đoạn dài nhất. Phương trình mặt phẳng \((\alpha)\) là
\(x+5z-18\) | |
\(x+5z=0\) | |
\(3x+4z=0\) | |
\(x+5y=0\) |