Giả sử hàm số \(y=f(x)\) liên tục, nhận giá trị dương trên \((0;+\infty)\) và thỏa mãn \(f(1)=1\), \(f(x)=f'(x)\cdot\sqrt{3x+1}\), với mọi \(x>0\). Mệnh đề nào sau đây đúng?
\(3< f(5)<4\) | |
\(2< f(5)<3\) | |
\(1< f(5)<2\) | |
\(4< f(5)<5\) |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$. Gọi $F(x)$ và $G(x)$ là hai nguyên hàm của $f(x)$ thỏa mãn $2F(3)+G(3)=9+2F(-1)+G(-1)$. Khi đó $\displaystyle\displaystyle\int\limits_0^2\big(x^2+f(3-2x)\big)\mathrm{\,d}x$ bằng
$\dfrac{25}{6}$ | |
$\dfrac{7}{6}$ | |
$\dfrac{43}{6}$ | |
$3$ |
Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1\}$ thỏa mãn $f^{\prime}(x)=\dfrac{1}{x-1}$, $f(3)=2021$. Tính $f(5)$.
$f(5)=2020-\dfrac{1}{2}\ln2$ | |
$f(5)=2021-\ln2$ | |
$f(5)=2021+\ln2$ | |
$f(5)=2020+\ln2$ |
Họ các nguyên hàm của hàm số $f(x)=\dfrac{2}{x+1}$ trên $\mathbb{R}\setminus\{-1\}$ là
$\dfrac{-2}{(x+1)^2}+C$ | |
$2\ln|x+1|+C$ | |
$-\dfrac{1}{2}\ln|x+1|+C$ | |
$\dfrac{1}{(x+1)^2}+C$ |
Tính đạo hàm của hàm số $y=\sqrt{x+\cos x}$.
$y'=\dfrac{1+\sin x}{2\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{2\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{2\sqrt{x+\sin x}}$ |
Tính $\displaystyle\displaystyle\int\mathrm{e}^{2x-5}\mathrm{\,d}x$ ta được kết quả nào sau đây?
$\dfrac{\mathrm{e}^{2x-5}}{-5}+C$ | |
$-5\mathrm{e}^{2x-5}+C$ | |
$\dfrac{\mathrm{e}^{2x-5}}{2}+C$ | |
$2\mathrm{e}^{2x-5}+C$ |
Đạo hàm của hàm số $y=\sqrt{x^2+1}$ là
$y'=\dfrac{x}{2\sqrt{x^2+1}}$ | |
$y'=\dfrac{1}{\sqrt{x^2+1}}$ | |
$y'=\dfrac{x^2+1}{2\sqrt{x^2+1}}$ | |
$y'=\dfrac{x}{\sqrt{x^2+1}}$ |
Họ nguyên hàm của hàm số $f\left(x\right)=x-\sin2x$ là
$\dfrac{x^2}{2}+\cos2x+C$ | |
$\dfrac{x^2}{2}+\dfrac{1}{2}\cos2x+C$ | |
$x^2+\dfrac{1}{2}\cos2x+C$ | |
$\dfrac{x^2}{2}-\dfrac{1}{2}\cos2x+C$ |
Hàm số $F\left(x\right)=\cos3x$ là nguyên hàm của hàm số
$f\left(x\right)=\dfrac{\sin3x}{3}$ | |
$f\left(x\right)=-3\sin3x$ | |
$f\left(x\right)=3\sin 3x$ | |
$f\left(x\right)=-\sin3x$ |
Tìm nguyên hàm của hàm số $f(x)=\cos3x$.
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=\dfrac{1}{3}\sin3x+C$ | |
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=\sin3x+C$ | |
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=3\sin3x+C$ | |
$\displaystyle\displaystyle\int\cos3x\mathrm{d}x=-\dfrac{1}{3}\sin3x+C$ |
Họ nguyên hàm của hàm số $f\left(x\right)=\mathrm{e}^{3x}$ là
$3\mathrm{e}^{x}+C$ | |
$\dfrac{1}{3}\mathrm{e}^{x}+C$ | |
$\dfrac{1}{3}\mathrm{e}^{3x}+C$ | |
$3\mathrm{e}^{3x}+C$ |
Tất cả nguyên hàm của hàm số $f\left(x\right)=\dfrac{1}{2x+3}$ là
$\dfrac{1}{2}\ln\left(2x+3\right)+C$ | |
$\dfrac{1}{2}\ln\left|2x+3\right|+C$ | |
$\ln \left|2x+3\right|+C$ | |
$\dfrac{1}{\ln2}\ln\left|2x+3\right|+C$ |
Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$ |
Tính $\displaystyle\displaystyle\int\limits3^{2018x}\mathrm{\,d}x$.
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{\ln3}+C$ | |
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{\ln2018}+C$ | |
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2018x}}{2018\ln3}+C$ | |
$\displaystyle\displaystyle\int\limits3^{2018x} \mathrm{\,d}x=\dfrac{3^{2019x}}{2019}+C$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=-1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ | |
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{4}-1$ | |
$F\left(\dfrac{\pi}{6}\right)=\sqrt{3}-1$ | |
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{5}{4}$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\dfrac{1}{2x+3}$ và $F(0)=0$. Tính $F(2)$.
$F(2)=\ln\dfrac{7}{3}$ | |
$F(2)=-\dfrac{1}{2}\ln3$ | |
$F(2)=\dfrac{1}{2}\ln\dfrac{7}{3}$ | |
$F(2)=\ln21$ |
Biết rằng $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin(1-2x)$ và $F\left(\dfrac{1}{2}\right)=1$. Mệnh đề nào sau đây đúng?
$F(x)=\dfrac{1}{2}\cos(1-2x)+\dfrac{1}{2}$ | |
$F(x)=\cos(1-2x)$ | |
$F(x)=\cos(1-2x)+1$ | |
$F(x)=-\dfrac{1}{2}\cos(1-2x)+\dfrac{3}{2}$ |
Biết $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=3x\cos(2x-5)+C$. Tìm khẳng định đúng trong các khẳng định sau:
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(6x-5)+C$ | |
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(2x-5)+C$ | |
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(2x-5)+C$ | |
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(6x-5)+C$ |
Biết $F(x)$ là một nguyên hàm của $f(x)=\dfrac{1}{x-1}$ và $F(2)=1$. Tính $F(3)$.
$F(3)=\dfrac{7}{4}$ | |
$F(3)=\ln2+1$ | |
$F(3)=\dfrac{1}{2}$ | |
$F(3)=\ln2-1$ |
Tích phân $\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{1}{\sqrt{x+1}}\mathrm{\,d}x=a+b\sqrt{2}$ với $a,\,b\in\mathbb{Q}$. Khi đó $a-b$ bằng
$4$ | |
$-4$ | |
$1$ | |
$-1$ |