Có bao nhiêu giá trị nguyên của tham số $m$ sao cho hàm số $y=\dfrac{mx+9}{x+m}$ nghịch biến trên khoảng $\left(0;2\right)$.
$7$ | |
$4$ | |
$5$ | |
$6$ |
Tập hợp các tham số thực \(m\) để hàm số \(y=\dfrac{x}{x-m}\) nghịch biến trên \((1;+\infty)\) là
\((0;1)\) | |
\([0;1)\) | |
\((0;1]\) | |
\([0;1]\) |
Cho hàm số \(f\left(x\right)=\dfrac{mx-4}{x-m}\) (\(m\) là tham số thực). Có bao nhiêu giá trị nguyên của \(m\) để hàm số đồng biến trên khoảng \(\left(0;+\infty\right)\)?
\(5\) | |
\(4\) | |
\(3\) | |
\(2\) |
Cho hàm số \(y=\dfrac{mx+2}{2x+m}\) với \(m\) là tham số thực. Gọi \(S\) là tập hợp tất cả các giá trị nguyên của \(m\) để hàm số nghịch biến trên khoảng \((0;1)\). Tìm số phần tử của \(S\).
\(1\) | |
\(5\) | |
\(2\) | |
\(3\) |
Gọi \(S\) là tập hợp các số nguyên \(m\) để hàm số $$y=\dfrac{x+2m-3}{x-3m+2}$$đồng biến trên khoảng \((-\infty;-14)\). Tính tổng \(T\) của các phần tử trong \(S\).
\(T=-10\) | |
\(T=-9\) | |
\(T=-6\) | |
\(T=-5\) |
Số giá trị nguyên của \(m\) để hàm số $$y=\dfrac{mx-2}{-2x+m}$$nghịch biến trên khoảng \(\left(\dfrac{1}{2};+\infty\right)\) là
\(4\) | |
\(5\) | |
\(3\) | |
\(2\) |
Tìm tất cả các giá trị của tham số \(m\) để hàm số $$y=\dfrac{mx+1}{x+m}$$đồng biến trên khoảng \((2;+\infty)\).
\(-2\leq m<-1\) hoặc \(m>1\) | |
\(m\leq-1\) hoặc \(m>1\) | |
\(-1< m<1\) | |
\(m<-1\) hoặc \(m\geq1\) |
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?
$4$ | |
$2$ | |
$1$ | |
$3$ |
Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
$21$ | |
$10$ | |
$8$ | |
$2$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$ | |
$11$ | |
$6$ | |
$5$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.
$\left(-\infty;-\dfrac{14}{15}\right)$ | |
$\left(-\infty;-\dfrac{14}{15}\right]$ | |
$\left[-2;-\dfrac{14}{15}\right]$ | |
$\left[-\dfrac{14}{15};+\infty\right)$ |
Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.
$(-\infty;6]$ | |
$(-\infty;3]$ | |
$(-\infty;3)$ | |
$[3;6]$ |
Cho hàm số $f\left(x\right)=x^3-2x^2+mx-3$ . Tìm $m$ để $f'\left(x\right)< 0$ với mọi $x\in\left(0;2\right)$.
Cho hàm số $$y=2x^3-3(3m+1)x^2+6\left(2m^2+m\right)x-12m^2+3m+1.$$Tính tổng tất cả giá trị nguyên dương của tham số \(m\) để hàm số nghịch biến trên khoảng \((1;3)\).
\(0\) | |
\(3\) | |
\(1\) | |
\(2\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên mỗi khoảng xác định của nó.
\(m<-3\) | |
\(m\leq-3\) | |
\(m\leq1\) | |
\(m<1\) |
Tìm tất cả các giá trị thực của tham số \(m\) để hàm số $$y=\dfrac{x+2-m}{x+1}$$nghịch biến trên các khoảng xác định của nó.
\(m\leq1\) | |
\(m<1\) | |
\(m<-3\) | |
\(m\leq-3\) |
Có tât cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
$8$ | |
$9$ | |
$7$ | |
$6$ |
Số giá trị nguyên của tham số $m$ để hàm số $y=x^3-(m+1)x^2+3x+1$ đồng biến trên $\mathbb{R}$ là
$4$ | |
$6$ | |
$5$ | |
$7$ |
Giá trị của tham số $m$ sao cho tiệm cận ngang của đồ thị hàm số $y=\dfrac{mx+5}{x+1}$ đi qua điểm $M(2;-4)$ là
$4$ | |
$-4$ | |
$-2$ | |
$2$ |
Cho hàm số $y=\dfrac{-x+1}{2x-1}$ có đồ thị $(\mathscr{C})$ và đường thẳng $(d)\colon y=x+m$. Với mọi giá trị thực của $m$ đường thẳng $(d)$ luôn cắt đồ thị $(\mathscr{C})$ tại hai điểm phân biệt $A$ và $B$. Gọi $k_1,\,k_2$ lần lượt là hệ số góc của các tiếp tuyến với $(\mathscr{C})$ tại $A$ và $B$. Giá trị nhỏ nhất của $T=k_1^{2022}+k_2^{2022}$ bằng
$\dfrac{1}{2}$ | |
$2$ | |
$\dfrac{2}{3}$ | |
$1$ |