Cho hàm số $f(x)$, bảng biến thiên của hàm số $f'(x)$ như sau:
Số điểm cực trị của hàm số $f\big(x^2-2x\big)$ là
$9$ | |
$3$ | |
$7$ | |
$5$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.
Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
$3$ | |
$4$ | |
$1$ | |
$2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.
Số điểm cực trị của hàm số $g(x)=3f\big(f(x)\big)+4$ là
$5$ | |
$3$ | |
$8$ | |
$2$ |
Cho hàm số $f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu của $f'(x)$ như hình:
Hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu
$1$ | |
$2$ | |
$3$ | |
$4$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị như hình vẽ.
Tìm số điểm cực trị của hàm số $g(x)=f\left(x^2\right)$.
$5$ | |
$3$ | |
$7$ | |
$11$ |
Cho $f(x)$ là hàm số bậc bốn thỏa mãn $f(0)=0$. Hàm số $f'(x)$ có bảng biến thiên như sau:
Hàm số $g(x)=\left|f\left(x^3\right)-3x\right|$ có bao nhiêu điểm cực trị?
$3$ | |
$5$ | |
$4$ | |
$2$ |
Cho hàm số bậc bốn \(y=f(x)\) có đồ thị như hình trên. Số điểm cực trị của hàm số \(g(x)=f\left(x^3+3x^2\right)\) là
\(5\) | |
\(3\) | |
\(7\) | |
\(11\) |
Cho hàm số $y=f(x)$ có đạo hàm trên $\mathbb{R}$ và có bảng xét dấu $f'(x)$ như sau:
Hỏi hàm số $y=f\big(x^2-2x\big)$ có bao nhiêu điểm cực tiểu?
$1$ | |
$3$ | |
$2$ | |
$4$ |
Cho hàm số $y=f(x)$ có đạo hàm $y=f'(x)$ với đồ thị như hình vẽ.
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $g(x)=f\big(x^2-8x+m\big)$ có $5$ điểm cực trị.
$15$ | |
$16$ | |
$17$ | |
$18$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ.
Hàm số $g(x)=\big[f(3-x)\big]^2$ nghịch biến trên khoảng nào trong các khoảng sau?
$(-2;5)$ | |
$(1;2)$ | |
$(2;5)$ | |
$(5;+\infty)$ |
Cho hàm số $f$ có đạo hàm liên tục trên $(-1;3)$. Bảng biến thiên của hàm số $f'(x)$ như hình vẽ.
Hàm số $g(x)=f\left(1-\dfrac{x}{2}\right)+x$ nghịch biến trên khoảng nào trong các khoảng sau?
$(-4;-2)$ | |
$(2;4)$ | |
$(-2;0)$ | |
$(0;2)$ |
Cho hàm số bậc bốn $y=f(x)$ thỏa mãn $f(0)=0$. Hàm số $y=f'(x)$ có đồ thị như hình vẽ.
Hàm số $g(x)=\left|2f\big(x^2+x\big)-x^4-2x^3+x^2+2x\right|$ có bao nhiêu cực trị?
$4$ | |
$5$ | |
$6$ | |
$7$ |
Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình trên. Số điểm cực trị của hàm số \(y=\left|f(x-2)-3\right|\) bằng
\(5\) | |
\(4\) | |
\(6\) | |
\(3\) |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Số điểm cực tiểu của hàm số đã cho là
$0$ | |
$3$ | |
$2$ | |
$1$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ và có bảng xét dấu của đạo hàm như sau:
Số điểm cực đại của hàm số đã cho là
$3$ | |
$1$ | |
$2$ | |
$0$ |
Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:
Số điểm cực trị của hàm số đã cho bằng
$3$ | |
$0$ | |
$1$ | |
$2$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Số điểm cực trị của hàm số đã cho bằng
$1$ | |
$2$ | |
$3$ | |
$0$ |
Cho hàm số $y=f(x)$ có bảng xét dấu của $f'(x)$ như sau:
Hàm số $y=f(5-2x)$ đồng biến trên khoảng nào dưới đây?
$(1;3)$ | |
$(-\infty;-3)$ | |
$(3;4)$ | |
$(4;5)$ |
Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ và có bảng xét dấu của đạo hàm như sau:
Số điểm cực đại của hàm số đã cho là
$3$ | |
$1$ | |
$2$ | |
$0$ |
Cho hàm số $y=ax^4+bx^2+c$ có đồ thị như đường cong trong hình bên.
Số điểm cực trị của hàm số đã cho là
$2$ | |
$3$ | |
$1$ | |
$0$ |