Biết $F(x)=-\dfrac{1}{x^2}$ là một nguyên hàm của hàm số $y=\dfrac{f(x)}{x}$. Tính $\displaystyle\displaystyle\int f'(x)\ln{x}\mathrm{\,d}x$.
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$ | |
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}+\dfrac{1}{x^2}+C$ | |
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$ | |
$\displaystyle\displaystyle\int\limits f'(x)\ln{x}\mathrm{\,d}x=-\dfrac{2\ln{x}}{x^2}-\dfrac{1}{x^2}+C$ |
Cho hàm số $f(x)$ xác định trên $\mathbb{R}\setminus\{1;4\}$ có $f'(x)=\dfrac{2x-5}{x^2-5x+4}$ thỏa mãn $f(3)=1$. Giá trị $f(2)$ bằng
$1$ | |
$-1+3\ln2$ | |
$1+3\ln2$ | |
$1-\ln2$ |
Cho hàm số \(f(x)\) thỏa mãn \(f'(x)=x\mathrm{e}^x\) và \(f(0)=2\). Tính \(f(1)\).
\(f(1)=8-2\mathrm{e}\) | |
\(f(1)=\mathrm{e}\) | |
\(f(1)=3\) | |
\(f(1)=5-2\mathrm{e}\) |
Cho hàm số \(f(x)\) liên tục trên \(\mathbb{R}\). Biết \(\cos2x\) là một nguyên hàm của hàm số \(f(x)\cdot\mathrm{e}^x\), họ tất cả các nguyên hàm của hàm số \(f'(x)\mathrm{e}^x\) là
\(-\sin2x+\cos2x+C\) | |
\(-2\sin2x+\cos2x+C\) | |
\(-2\sin2x-\cos2x+C\) | |
\(2\sin2x-\cos2x+C\) |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$ | |
$11$ | |
$6$ | |
$5$ |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
$m=1$ | |
$m=4$ | |
$m=13$ | |
$m=8$ |
Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.
$m\geq2$ | |
$m\leq2$ | |
$m=2$ | |
$m>2$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.
$\left(-\infty;-\dfrac{14}{15}\right)$ | |
$\left(-\infty;-\dfrac{14}{15}\right]$ | |
$\left[-2;-\dfrac{14}{15}\right]$ | |
$\left[-\dfrac{14}{15};+\infty\right)$ |
Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.
$(-\infty;6]$ | |
$(-\infty;3]$ | |
$(-\infty;3)$ | |
$[3;6]$ |
Cho $F(x)=x+\cos x$ là một nguyên hàm của hàm số $f(x)$. Mệnh đề nào sau đây đúng?
$f(x)=\dfrac{1}{2}x^2-\cos x$ | |
$f(x)=1-\sin x$ | |
$f(x)=1+\sin x$ | |
$f(x)=\dfrac{1}{2}x^2+\sin x$ |
Tính nguyên hàm $\displaystyle\displaystyle\int\dfrac{\left(\ln x+2\right)\mathrm{d}x}{x\ln x}$ bằng cách đặt $t=\ln x$ ta được nguyên hàm nào sau đây?
$\displaystyle\displaystyle\int\dfrac{t\mathrm{\,d}t}{t-2}$ | |
$\displaystyle\displaystyle\int(t+2)\mathrm{\,d}t$ | |
$\displaystyle\displaystyle\int\left(1+\dfrac{2}{t}\right)\mathrm{\,d}t$ | |
$\displaystyle\displaystyle\int\dfrac{(t+2)\mathrm{\,d}t}{t^2}$ |
Với mọi $x\neq0$ hàm số $g(x)=3x^2+\dfrac{1}{x^2}+3$ là đạo hàm của hàm số nào?
$f(x)=x^3+\dfrac{1}{x}+3x+2$ | |
$f(x)=x^3+\dfrac{1}{2x}+3x$ | |
$f(x)=x^3-\dfrac{1}{x}+3x+1$ | |
$f(x)=3x^3-\dfrac{1}{x}+3x$ |
Cho hàm số $y=f(x)$ có đạo hàm là $f^{\prime}(x)=12x^2+2$, $\forall x\in\mathbb{R}$ và $f(1)=3$. Biết $F(x)$ là nguyên hàm của $f(x)$ thỏa mãn $F(0)=2$, khi đó $F(1)$ bằng
$-3$ | |
$1$ | |
$2$ | |
$7$ |
Cho hàm số $f(x)$ thỏa mãn $f(x)=x\mathrm{e}^x+\displaystyle\int\limits_{0}^{2}\left(f(x)+f'(x)-\mathrm{e}^x-1\right)\mathrm{\,d}x$. Tính tích phân $\displaystyle\int\limits_{0}^{1}f(x)\mathrm{\,d}x$.
$2\mathrm{e}^2-1$ | |
$-2\mathrm{e}^2-1$ | |
$-2\mathrm{e}^2+1$ | |
$2\mathrm{e}^2+1$ |
Cho hàm số $y=f\left(x\right)$ liên tục trên $\mathbb{R}\setminus\left\{0;-1\right\}$ thỏa mãn điều kiện $f\left(1\right)=-2\ln2$ và $x\left(x+1\right)\cdot f'\left(x\right)+f\left(x\right)=x^2+x$. Giá trị $f\left(2\right)=a+b\ln3$, với $a,\,b\in\mathbb{Q}$. Tính $a^2+b^2$.
Cho hàm số $f\left(x\right)$ thỏa mãn $f'\left(x\right)=3-5\cos x$ và $f\left(0\right)=5$. Mệnh đề nào dưới đây đúng?
$f\left(x\right)=3x+5\sin x+2$ | |
$f\left(x\right)=3x-5\sin x-5$ | |
$f\left(x\right)=3x-5\sin x+5$ | |
$f\left(x\right)=3x+5\sin x+5$ |
Cho hàm số $f(x)$ thỏa $f(1)=\dfrac{1}{3}$ và $f'(x)=\big[xf(x)\big]^2$ với mọi $x\in\mathbb{R}$. Giá trị $f(2)$ bằng
$\dfrac{2}{3}$ | |
$\dfrac{3}{2}$ | |
$\dfrac{16}{3}$ | |
$\dfrac{3}{16}$ |
Cho hàm số $f(x)$ liên tục trên đoạn $[1;2]$. Biết $f(2)=a$ và $\displaystyle\displaystyle\int\limits_{1}^{2}(x-1)f'(x)\mathrm{\,d}x=b$. Tích phân $\displaystyle\displaystyle\int\limits_{1}^{2}f(x)\mathrm{\,d}x$ có giá trị bằng
$a-b$ | |
$b-a$ | |
$a+b$ | |
$-a-b$ |
Hàm số $F(x)=x^2+\sin x$ là nguyên hàm của hàm số nào?
$y=\dfrac{1}{3}x^3+\cos x$ | |
$y=2x+\cos x$ | |
$y=\dfrac{1}{3}x^3-\cos x$ | |
$y=2x-\cos x$ |
Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$ |