Gọi $z_0$ là nghiệm phức có phần ảo dương của phương trình $z^2+6z+13=0$. Tọa độ điểm biểu diễn của số phức $w=\left(1+i\right)z_0$ là
![]() | $\left(5;1\right)$ |
![]() | $\left(-1;-5\right)$ |
![]() | $\left(1;5\right)$ |
![]() | $\left(-5;-1\right)$ |
Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là
![]() | $\left(-1;-\dfrac{2}{3}\right)$ |
![]() | $\left(-1;\dfrac{2}{3}\right)$ |
![]() | $\left(1;-\dfrac{2}{3}\right)$ |
![]() | $\left(1;\dfrac{2}{3}\right)$ |
Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là
![]() | $P(3;-12)$ |
![]() | $Q(3;12)$ |
![]() | $M(14;-5)$ |
![]() | $N(-3;12)$ |
Tìm tọa độ của điểm biểu diễn số phức $z=\dfrac{3+4i}{1-i}$ trên mặt phẳng tọa độ.
![]() | $Q\left(\dfrac{1}{2};-\dfrac{7}{2}\right)$ |
![]() | $N\left(\dfrac{1}{2};\dfrac{7}{2}\right)$ |
![]() | $P\left(-\dfrac{1}{2};\dfrac{7}{2}\right)$ |
![]() | $M\left(-\dfrac{1}{2};-\dfrac{7}{2}\right)$ |
Cho hai số phức $z_1=1-2i$ và $z_2=3+4i$. Tìm điểm $M$ biểu diễn số phức $z_1\cdot z_2$ trên mặt phẳng tọa độ.
![]() | $M(-2;11)$ |
![]() | $M(11;2)$ |
![]() | $M(11;-2)$ |
![]() | $M(-2;-11)$ |
Kí hiệu \(z_0\) là nghiệm phức có phần ảo dương của phương trình \(2z^2-6z+15=0\). Trên mặt phẳng tọa độ, tìm tọa độ của điểm \(M\) biểu diễn số phức \(z_0\).
![]() | \(M\left(-\dfrac{3}{2};\dfrac{\sqrt{21}}{2}i\right)\) |
![]() | \(M\left(-\dfrac{3}{2};\dfrac{\sqrt{21}}{2}\right)\) |
![]() | \(M\left(\dfrac{3}{2};\dfrac{\sqrt{21}}{2}\right)\) |
![]() | \(M\left(\dfrac{3}{2};\dfrac{\sqrt{21}}{2}i\right)\) |
Gọi $z_1,\,z_2$ là hai nghiệm phức của phương trình $z^2-6z+14=0$ và $M,\,N$ lần lượt là điểm biểu diễn của $z_1,\,z_2$ trên mặt phẳng tọa độ. Trung điểm của đoạn $MN$ có tọa độ là
![]() | $(3;7)$ |
![]() | $(-3;0)$ |
![]() | $(3;0)$ |
![]() | $(-3;7)$ |
Điểm $M$ trong hình vẽ bên là điểm biểu diễn cho số phức $z$.
Phần ảo của số phức $(1+i)z$ bằng
![]() | $7$ |
![]() | $-7$ |
![]() | $-1$ |
![]() | $1$ |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức $z=2-7i$ có tọa độ là
![]() | $(2;7)$ |
![]() | $(-2;7)$ |
![]() | $(2;-7)$ |
![]() | $(-7;2)$ |
Cho số phức $z$ thỏa mãn điều kiện $2\overline{z}=z+2-3i$.
Số phức $z$ có điểm biểu diễn là điểm nào trong các điểm $M,\,N,\,P,\,Q$ ở hình trên?
![]() | $M$ |
![]() | $Q$ |
![]() | $P$ |
![]() | $N$ |
Gọi $M, N$ lần lượt là điểm biểu diễn hình học các số phức $z=4+i$ và $w=2+3 i$. Tọa độ trung điểm $I$ của đoạn thẳng $MN$ là
![]() | $(2;-2)$ |
![]() | $(-2;2)$ |
![]() | $(3;2)$ |
![]() | $\left(\dfrac{3}{2};\dfrac{7}{2}\right)$ |
Điểm nào trong hình vẽ dưới đây là điểm biểu diễn của số phức $z=\dfrac{i-3}{1+i}$?
![]() | Điểm $B$ |
![]() | Điểm $C$ |
![]() | Điểm $A$ |
![]() | Điểm $D$ |
Biết phương trình $z^2+2z+m=0$ ($m\in\mathbb{R}$) có một nghiệm là $z_1=-1+3i$. Gọi $z_2$ là nghiệm còn lại. Phần ảo của số phức $w=z_1-2z_2$ bằng
![]() | $1$ |
![]() | $-3$ |
![]() | $9$ |
![]() | $-9$ |
Gọi $z,\,w$ là các số phức có điểm biểu diễn lần lượt là $M$ và $N$ trên mặt phẳng $Oxy$ như hình minh họa bên.
Phần ảo của số phức $\dfrac{z}{w}$ là
![]() | $\dfrac{14}{17}$ |
![]() | $3$ |
![]() | $-\dfrac{5}{17}$ |
![]() | $-\dfrac{1}{2}$ |
Trong mặt phẳng tọa độ, tìm tập hợp các điểm biểu diễn số phức $z$ thỏa mãn $\dfrac{z+4i}{z-4i}$ là một số thực dương.
![]() | Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$) |
![]() | Trục $Oy$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $2i$, $J$ là điểm biểu diễn $-2i$) |
![]() | Đoạn $IJ$ (với $I$ là điểm biểu diễn $4i$, $J$ là điểm biểu diễn $-4i$) |
![]() | Trục $Ox$ bỏ đi đoạn $IJ$ (với $I$ là điểm biểu diễn $4$, $J$ là điểm biểu diễn $-4$) |
Gọi $z_1$ và $z_2$ là hai nghiệm phức của phương trình $z^2-2z+5=0$, trong đó $z_2$ có phần ảo âm. Tìm phần ảo $b$ của số phức $w=\left[\left(z_1-i\right)\left(z_2+2i\right)\right]^{2018}$.
![]() | $b=2^{1009}$ |
![]() | $b=2^{2017}$ |
![]() | $b=-2^{2018}$ |
![]() | $b=2^{2018}$ |
Trong mặt phẳng $Oxy$, điểm biểu diễn số phức $z=2-i$ có tọa độ là
![]() | $(2;-1)$ |
![]() | $(-2;1)$ |
![]() | $(2;1)$ |
![]() | $(-2;-1)$ |
Cho số phức $z=6+7i$. Số phức liên hợp của $z$ có điểm biểu diễn là điểm nào sau đây?
![]() | $N(-6;7)$ |
![]() | $M(6;-7)$ |
![]() | $Q(6;7)$ |
![]() | $P(-6;-7)$ |
Gọi \(z_0\) là nghiệm phức có phần ảo âm của phương trình \(z^2-2z+5=0\). Môđun của số phức \(z_0+i\) bằng
![]() | \(2\) |
![]() | \(\sqrt{2}\) |
![]() | \(\sqrt{10}\) |
![]() | \(10\) |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức \(z=-1+2i\) là điểm nào dưới đây?
![]() | \(Q\left(1;2\right)\) |
![]() | \(P\left(-1;2\right)\) |
![]() | \(N\left(1;-2\right)\) |
![]() | \(M\left(-1;-2\right)\) |