Trong không gian $Oxyz$, cho điểm $A(-4;-3;3)$ và mặt phẳng $(P)\colon x+y+z=0$. Đường thẳng đi qua $A$, cắt trục $Oz$ và song song với $(P)$ có phương trình là
$\dfrac{x-4}{4}=\dfrac{y-3}{3}=\dfrac{z-3}{-7}$ | |
$\dfrac{x+4}{4}=\dfrac{y+3}{3}=\dfrac{z-3}{1}$ | |
$\dfrac{x+4}{-4}=\dfrac{y+3}{3}=\dfrac{z-3}{1}$ | |
$\dfrac{x+8}{4}=\dfrac{y+6}{3}=\dfrac{z-10}{-7}$ |
Trong không gian $Oxyz$, cho ba điểm $A(2;-2;3)$, $B(1;3;4)$ và $C(3;-1;5)$. Đường thẳng đi qua $A$ và song song với $BC$ có phương trình là
$\dfrac{x-2}{2}=\dfrac{y+4}{-2}=\dfrac{z-1}{3}$ | |
$\dfrac{x+2}{2}=\dfrac{y-2}{-4}=\dfrac{z+3}{1}$ | |
$\dfrac{x-2}{4}=\dfrac{y+2}{2}=\dfrac{z-3}{9}$ | |
$\dfrac{x-2}{2}=\dfrac{y+2}{-4}=\dfrac{z-3}{1}$ |
Trong không gian $Oxyz$, cho hai đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y}{1}=\dfrac{z}{-2}$, $d'\colon\begin{cases} x=-1-2t\\ y=t\\ z=-1-t \end{cases}$ và mặt phẳng $(P)\colon x-y-z=0$. Biết rằng đường thẳng $\Delta$ song song với mặt phẳng $(P)$, cắt các đường thẳng $d,\,d'$ lần lượt tại $M$ và $N$ sao cho $MN=\sqrt{2}$ (điểm $M$ không trùng với gốc tọa độ $O$). Phương trình của đường thẳng $\Delta$ là
$\begin{cases}x=\dfrac{4}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ | |
$\begin{cases}x=-\dfrac{4}{7}+3t\\ y=\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ | |
$\begin{cases}x=\dfrac{1}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{3}{7}-5t\end{cases}$ | |
$\begin{cases}x=\dfrac{1}{7}+3t\\ y=-\dfrac{4}{7}+8t\\ z=-\dfrac{8}{7}-5t\end{cases}$ |
Phương trình đường thẳng \(\Delta\) đi qua điểm \(A(3;2;1)\) và song song với đường thẳng \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z+3}{1}\) là
\(\begin{cases}x=3-2t\\ y=2-4t\\ z=1-t\end{cases}\) | |
\(\begin{cases}x=2+3t\\ y=4+2t\\ z=1+t\end{cases}\) | |
\(\begin{cases}x=2t\\ y=4t\\ z=3+t\end{cases}\) | |
\(\begin{cases}x=3+2t\\ y=2-4t\\ z=1+t\end{cases}\) |
Trong không gian \(Oxyz\), cho điểm \(M(1;-3;4)\), đường thẳng \(d\colon\dfrac{x+3}{3}=\dfrac{y-5}{-5}=\dfrac{z-2}{-1}\) và mặt phẳng \((P)\colon2x+z-2=0\). Viết phương trình đường thẳng \(\Delta\) đi qua \(M\), vuông góc với \(d\) và song song với \((P)\).
\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{-1}=\dfrac{z-4}{-2}\) | |
\(\Delta\colon\dfrac{x-1}{-1}=\dfrac{y+3}{-1}=\dfrac{z-4}{-2}\) | |
\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{1}=\dfrac{z-4}{-2}\) | |
\(\Delta\colon\dfrac{x-1}{1}=\dfrac{y+3}{-1}=\dfrac{z-4}{2}\) |
Trong không gian $Oxyz$, phương trình đường thẳng $d$ đi qua điểm $M(2;1;-1)$ và có một vectơ chỉ phương $\overrightarrow{u}=(1;-2;3)$ là
$\dfrac{x-1}{2}=\dfrac{y+2}{1}=\dfrac{z-3}{-1}$ | |
$\dfrac{x-2}{1}=\dfrac{y-1}{-2}=\dfrac{z+1}{3}$ | |
$\dfrac{x+1}{2}=\dfrac{y-2}{1}=\dfrac{z+3}{-1}$ | |
$\dfrac{x+2}{1}=\dfrac{y+1}{-2}=\dfrac{z-1}{3}$ |
Trong không gian $Oxyz$, cho hai điểm $M(1;2;3)$, $A(2;4;4)$ và hai mặt phẳng $(P)\colon x+y-2z+1=0$, $(Q)\colon x-2y-z+4=0$. Viết phương trình đường thẳng $\Delta$ đi qua $M$, cắt $(P)$, $(Q)$ lần lượt tại $B,\,C$ sao cho tam giác $ABC$ cân tại $A$ và nhận $AM$ làm đường trung tuyến.
$\dfrac{x-1}{-1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}$ | |
$\dfrac{x-1}{2}=\dfrac{y-2}{-1}=\dfrac{z-3}{1}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon2x+y+2z-1=0$. Gọi $d'$ là hình chiếu của đường thẳng $(d)$ lên mặt phẳng $(P)$, vectơ chỉ phương của đường thẳng $d'$ là
$\overrightarrow{u_2}=(5;-4;-3)$ | |
$\overrightarrow{u_1}=(5;16;-13)$ | |
$\overrightarrow{u_3}=(5;-16;-13)$ | |
$\overrightarrow{u_2}=(5;16;13)$ |
Trong không gian $Oxyz$, viết phương trình đường thẳng đi qua hai điểm $P(1;1;-1)$, $Q(2;3;2)$.
$\dfrac{x-1}{2}=\dfrac{y-1}{3}=\dfrac{z+1}{2}$ | |
$\dfrac{x+1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$ | |
$\dfrac{x-1}{1}=\dfrac{y-1}{2}=\dfrac{z+1}{3}$ | |
$\dfrac{x-1}{1}=\dfrac{y-2}{1}=\dfrac{z-3}{-1}$ |
Trong không gian $Oxyz$, cho điểm $M(1;-3;-2)$ và mặt phẳng $(P)\colon x-2y-3z+4=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
$\dfrac{x-1}{1}=\dfrac{y-3}{-2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{-3}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{2}=\dfrac{z+2}{3}$ |
Trong không gian $Oxyz$, cho đường thẳng $d\colon\dfrac{x}{1}=\dfrac{y-1}{1}=\dfrac{z-2}{-1}$ và mặt phẳng $(P)\colon x+2y+z-4=0$. Hình chiếu vuông góc của $d$ lên $(P)$ là đường thẳng có phương trình
$\dfrac{x}2=\dfrac{y+1}{1}=\dfrac{z+2}{-4}$ | |
$\dfrac{x}3=\dfrac{y+1}{-2}=\dfrac{z+2}{1}$ | |
$\dfrac{x}2=\dfrac{y-1}{1}=\dfrac{z-2}{-4}$ | |
$\dfrac{x}3=\dfrac{y-1}{-2}=\dfrac{z-2}{1}$ |
Trong không gian $Oxyz$, cho điểm $M(-1;3;2)$ và mặt phẳng $(P)\colon x-2y+4z+1=0$. Đường thẳng đi qua $M$ và vuông góc với $(P)$ có phương trình là
$\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{1}$ | |
$\dfrac{x-1}{1}=\dfrac{y+3}{-2}=\dfrac{z+2}{4}$ | |
$\dfrac{x+1}{1}=\dfrac{y-3}{-2}=\dfrac{z-2}{4}$ |
Trong không gian $Oxyz$ cho hai điểm $A(1;2;-3)$, $M(-2;-2;1)$ và đường thẳng $d$ có phương trình $\dfrac{x+1}{2}=\dfrac{y-5}{2}=\dfrac{z}{-1}$. Phương trình đường thẳng $d'$ đi qua $M$ và vuông góc với $d$ sao cho khoảng cách từ điểm $A$ đến $d'$ nhỏ nhất là
$\begin{cases}x=-2+t\\ y=-2\\ z=1+t\end{cases}$ | |
$\begin{cases}x=-2\\ y=-2+t\\ z=1+2t\end{cases}$ | |
$\begin{cases}x=-2+t\\ y=-2-t\\ z=1\end{cases}$ | |
$\begin{cases}x=-2+t\\ y=-2\\ z=1+2t\end{cases}$ |
Trong không gian $Oxyz$, phương trình chính tắc của đường thẳng $(d)\colon\begin{cases}x=1-2t\\ y=3t\\ z=2+t\end{cases}$ là
$\dfrac{x-1}{1}=\dfrac{y}{3}=\dfrac{z+2}{2}$ | |
$\dfrac{x+1}{1}=\dfrac{y}{3}=\dfrac{z-2}{2}$ | |
$\dfrac{x-1}{-2}=\dfrac{y}{3}=\dfrac{z-2}{1}$ | |
$\dfrac{x+1}{-2}=\dfrac{y}{3}=\dfrac{z+2}{1}$ |
Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $A(3;1;-1)$ và vuông góc với mặt phẳng $(P)\colon2x-y+2z-5=0$ là
$\dfrac{x+3}{2}=\dfrac{y+1}{-1}=\dfrac{z-1}{2}$ | |
$\dfrac{x-2}{3}=\dfrac{y+1}{1}=\dfrac{z-2}{-1}$ | |
$\dfrac{x-3}{2}=\dfrac{y-1}{1}=\dfrac{z+1}{2}$ | |
$\dfrac{x-3}{2}=\dfrac{y-1}{-1}=\dfrac{z+1}{2}$ |
Trong không gian $Oxyz$, phương trình nào dưới đây là phương trình đường thẳng $d$ đi qua điểm $M(1;2;-3)$ và vuông góc mặt phẳng $(P)\colon3x-y+5z+2=0$?
$\dfrac{x+1}{3}=\dfrac{y+2}{-1}=\dfrac{z-3}{5}$ | |
$\dfrac{x-3}{-1}=\dfrac{y-1}{2}=\dfrac{z+5}{-3}$ | |
$\dfrac{x-3}{1}=\dfrac{y-1}{-2}=\dfrac{z+5}{3}$ | |
$\dfrac{x-1}{-3}=\dfrac{y-2}{1}=\dfrac{z+3}{-5}$ |
Trong không gian $Oxyz$, phương trình đường thẳng đi qua điểm $M(1;1;-2)$ và vuông góc với mặt phẳng $(P)\colon x-y-z-1=0$ là
$\dfrac{x+1}{1}=\dfrac{y+1}{-1}=\dfrac{z-2}{-1}$ | |
$\dfrac{x-1}{1}=\dfrac{y-1}{1}=\dfrac{z+2}{-2}$ | |
$\dfrac{x-1}{1}=\dfrac{y-1}{-1}=\dfrac{z+2}{-1}$ | |
$\dfrac{x-1}{1}=\dfrac{y+1}{1}=\dfrac{z+1}{-2}$ |
Trong không gian \(Oxyz\), phương trình đường thẳng đi qua \(A(1;-2;3)\) và có vectơ chỉ phương \(\overrightarrow{u}=(2;-1;-2)\) là
\(\dfrac{x+1}{2}=\dfrac{y-2}{-1}=\dfrac{z+3}{-2}\) | |
\(\dfrac{x-1}{-2}=\dfrac{y+2}{-1}=\dfrac{z-3}{2}\) | |
\(\dfrac{x-1}{4}=\dfrac{y+2}{-2}=\dfrac{z-3}{-4}\) | |
\(\dfrac{x-1}{-2}=\dfrac{y+2}{1}=\dfrac{z-3}{-2}\) |
Trong không gian \(Oxyz\), cho đường thẳng \(d\colon\dfrac{x-1}{2}=\dfrac{y+5}{-1}=\dfrac{z-3}{4}\). Phương trình nào dưới đây là hình chiếu vuông góc của đường thẳng \(d\) trên mặt phẳng \((P)\colon x+3=0\)?
\(\begin{cases}x=-3\\ y=-5-t\\ z=-3+4t\end{cases}\) | |
\(\begin{cases}x=-3\\ y=-5+t\\ z=3+4t\end{cases}\) | |
\(\begin{cases}x=-3\\ y=-5+2t\\ z=3-t\end{cases}\) | |
\(\begin{cases}x=-3\\ y=-6-t\\ z=7+4t\end{cases}\) |
Trong không gian \(Oxyz\), cho hai điểm \(E(-1;0;2)\) và \(F(2;1;-5)\). Phương trình chính tắc của đường thẳng \(EF\) là
\(\dfrac{x-1}{3}=\dfrac{y}{1}=\dfrac{z+2}{-7}\) | |
\(\dfrac{x+1}{3}=\dfrac{y}{1}=\dfrac{z-2}{-7}\) | |
\(\dfrac{x-1}{1}=\dfrac{y}{1}=\dfrac{z+2}{-3}\) | |
\(\dfrac{x+1}{1}=\dfrac{y}{1}=\dfrac{z-2}{3}\) |