Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y=\dfrac{x-1}{x^2-2x-3}$ là
![]() | $4$ |
![]() | $3$ |
![]() | $2$ |
![]() | $1$ |
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y=\dfrac{x-1}{x^2-2x-3}$ là
![]() | $4$ |
![]() | $3$ |
![]() | $2$ |
![]() | $1$ |
Đồ thị hàm số nào dưới đây không có đường tiệm cận?
![]() | \(y=\dfrac{x}{x^2+1}\) |
![]() | \(y=\dfrac{1}{x}\) |
![]() | \(y=x^4-3x^2+2\) |
![]() | \(y=\dfrac{2x+1}{2-x}\) |
Đồ thị hàm số nào sau đây có \(3\) đường tiệm cận?
![]() | \(y=\dfrac{1-2x}{1+x}\) |
![]() | \(y=\dfrac{1}{4-x^2}\) |
![]() | \(y=\dfrac{x+3}{5x-1}\) |
![]() | \(y=\dfrac{x}{x^2-x+9}\) |
Đồ thị hàm số \(y=\dfrac{x^2+2x+3}{\sqrt{x^4-3x^2+2}}\) có bao nhiêu đường tiệm cận?
![]() | \(4\) |
![]() | \(5\) |
![]() | \(3\) |
![]() | \(6\) |
Đồ thị hàm số \(y=\dfrac{\sqrt{x+1}}{x^2-1}\) có bao nhiêu đường tiệm cận?
![]() | \(3\) |
![]() | \(1\) |
![]() | \(2\) |
![]() | \(0\) |
Đồ thị hàm số \(y=\dfrac{x+1}{\sqrt{x^2-1}}\) có bao nhiêu đường tiệm cận?
![]() | \(3\) |
![]() | \(1\) |
![]() | \(2\) |
![]() | \(0\) |
Đồ thị hàm số \(y=\dfrac{x^2+x-2}{x^2-3x+2}\) có tất cả bao nhiêu đường tiệm cận?
![]() | \(3\) |
![]() | \(0\) |
![]() | \(1\) |
![]() | \(2\) |
Đồ thị hàm số \(y=\dfrac{4x+4}{x^2+2x+1}\) có tất cả bao nhiêu đường tiệm cận?
![]() | \(2\) |
![]() | \(0\) |
![]() | \(1\) |
![]() | \(3\) |
Số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\sqrt{x+1}-1}{x^3-4x}\) lần lượt là
![]() | \(3\) và \(1\) |
![]() | \(1\) và \(1\) |
![]() | \(2\) và \(1\) |
![]() | \(1\) và \(0\) |
Số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số \(y=\dfrac{2x^2+2x}{x^2+2x+1}\) lần lượt là
![]() | \(0\) và \(2\) |
![]() | \(0\) và \(1\) |
![]() | \(1\) và \(2\) |
![]() | \(1\) và \(1\) |
Cho hàm số $y=\dfrac{ax+b}{cx+1}$ ($a,\,b,\,c\in\mathbb{R}$) có đồ thị như hình bên.
Khi đó $a+b-c$ bằng
![]() | $-2$ |
![]() | $-1$ |
![]() | $1$ |
![]() | $0$ |
Cho hàm số $f(x)=\dfrac{ax-1}{bx+c}\,(a,\,b,\,c\in\mathbb{R})$ có bảng biến thiên như hình bên.
Giá trị của $a-b-c$ thuộc khoảnh nào sau đây?
![]() | $\left(-1;0\right)$ |
![]() | $\left(-2;-1\right)$ |
![]() | $\left(1;2\right)$ |
![]() | $\left(0;1\right)$ |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình trên. Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là
![]() | \(4\) |
![]() | \(2\) |
![]() | \(3\) |
![]() | \(1\) |
Cho hàm số \(y=f(x)\) có bảng biến thiên như hình trên. Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
![]() | \(3\) |
![]() | \(4\) |
![]() | \(1\) |
![]() | \(2\) |
Cho hàm số \(y=\dfrac{ax-1}{bx+c}\) có đồ thị như hình trên. Tính giá trị biểu thức \(T=a+2b+3c\).
![]() | \(T=1\) |
![]() | \(T=2\) |
![]() | \(T=3\) |
![]() | \(T=4\) |
Biết rằng đồ thị hàm số \(y=\dfrac{(m-2n-3)x+5}{x-m-n}\) nhận hai trục tọa độ làm hai đường tiệm cận. Tính tổng \(S=m^2+n^2-2\).
![]() | \(S=2\) |
![]() | \(S=0\) |
![]() | \(S=-1\) |
![]() | \(S=1\) |
Biết rằng đồ thị hàm số \(y=\dfrac{ax+1}{bx-2}\) có đường tiệm cận đứng là \(x=2\) và đường tiệm cận ngang là \(y=3\). Tính giá trị của \(a+b\).
![]() | \(a+b=1\) |
![]() | \(a+b=5\) |
![]() | \(a+b=4\) |
![]() | \(a+b=0\) |
Đồ thị hàm số \(y=\dfrac{x+2021}{\sqrt{x^2-1}}\) có bao nhiêu đường tiệm cận ngang?
![]() | \(4\) |
![]() | \(1\) |
![]() | \(3\) |
![]() | \(2\) |
Tìm số đường tiệm cận đứng của đồ thị hàm số \(y=\dfrac{x^2-3x-4}{x^2-16}\).
![]() | \(1\) |
![]() | \(2\) |
![]() | \(0\) |
![]() | \(3\) |