Ngân hàng bài tập

Bài tập tương tự

C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Tiệm cận đứng của đồ thị hàm số đã cho là

$x=3$
$x=2$
$x=0$
$x=1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f(x)=\dfrac{ax-1}{bx+c}\,(a,\,b,\,c\in\mathbb{R})$ có bảng biến thiên như hình bên.

Giá trị của $a-b-c$ thuộc khoảnh nào sau đây?

$\left(-1;0\right)$
$\left(-2;-1\right)$
$\left(1;2\right)$
$\left(0;1\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình trên. Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đã cho là

\(4\)
\(2\)
\(3\)
\(1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình trên. Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là

\(3\)
\(4\)
\(1\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số \(y=f(x)\) có bảng biến thiên như hình bên. Đồ thị của \(f(x)\) có

\(2\) đường tiệm cận đứng là \(x=2\) và \(x=-4\)
\(2\) đường tiệm cận ngang là \(y=2\) và \(y=-4\)
\(2\) đường tiệm cận ngang là \(x=2\) và \(x=-4\)
\(2\) đường tiệm cận đứng là \(y=2\) và \(y=-4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $y=\dfrac{ax+b}{cx+1}$ ($a,\,b,\,c\in\mathbb{R}$) có đồ thị như hình bên.

Khi đó $a+b-c$ bằng

$-2$
$-1$
$1$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số trùng phương $f(x)=ax^4+bx^2+c$ có đồ thị như hình vẽ.

Hỏi đồ thị hàm số $y=\dfrac{2022}{\big[f(x)\big]^2+2f(x)-3}$ có tổng cộng bao nhiêu tiệm cận đứng?

$4$
$3$
$5$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=\dfrac{ax+b}{cx+1}$ ($a,b,c\in\mathbb{R}$) có đồ thị như hình bên.

Khi đó $a+b-c$ bằng

$-2$
$-1$
$1$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số \(y=\dfrac{ax-1}{bx+c}\) có đồ thị như hình trên. Tính giá trị biểu thức \(T=a+2b+3c\).

\(T=1\)
\(T=2\)
\(T=3\)
\(T=4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ liên tục và có bảng biến thiên trên đoạn $[-1;3]$ như hình vẽ.

Khẳng định nào sau đây đúng?

$\max\limits_{[-1;3]}f(x)=f(0)$
$\max\limits_{[-1;3]}f(x)=f(3)$
$\max\limits_{[-1;3]}f(x)=f(-1)$
$\max\limits_{[-1;3]}f(x)=f(2)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Số điểm cực tiểu của hàm số đã cho là

$0$
$3$
$2$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ dưới đây:

Số nghiệm của phương trình $f^2(x)-4f(x)+3=0$ là

$5$
$3$
$6$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số $y=\dfrac{x-1}{x^2-2x-3}$ là

$4$
$3$
$2$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)$ có bảng biến thiên như sau:

Hàm số đã cho đạt cực đại tại

$x=-2$
$x=3$
$x=5$
$x=-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tiệm cận đứng của đồ thị hàm số $y=\dfrac{3x-2}{x+4}$ là đường thẳng có phương trình

$x=4$
$x=3$
$x=-3$
$x=-4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=ax^3-3x^2+b$ ($a\neq0$) có bảng biến thiên như sau:

Mệnh đề nào dưới đây đúng?

$a>0,\,b< 0$
$a< 0,\,b>0$
$a>0,\,b>0$
$a< 0,\,b< 0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên trên đoạn $[-1;3]$ như sau:

Giá trị lớn nhất của hàm số đã cho trên đoạn $[-1;3]$ bằng

$1$
$4$
$0$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

$(-\infty;1)$
$(0;1)$
$(-1;0)$
$(-2;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $y=f(x)$ có bảng biến thiên như sau:

Giá trị cực đại của hàm số đã cho bằng

$-2$
$-1$
$4$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ sau:

Giá trị lớn nhất của hàm số $g(x)=f\big(4x-x^2\big)+\dfrac{x^3}{3}-3x^2+8x+\dfrac{1}{3}$ trên đoạn $[1;3]$ bằng

$15$
$\dfrac{25}{3}$
$\dfrac{19}{3}$
$12$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự