Ngân hàng bài tập

Bài tập tương tự

A

Giới hạn nào sau đây tồn tại tại \(x_0=-\dfrac{1}{2}\)?

\(\lim\limits_{x\to-\tfrac{1}{2}}\dfrac{|2x+1|}{2x+1}\)
\(\lim\limits_{x\to-\tfrac{1}{2}}\dfrac{2x+1}{|2x+1|}\)
\(\lim\limits_{x\to-\tfrac{1}{2}}f(x)\) với \(f(x)=\begin{cases}13x+4 &\text{khi }x\leq-\dfrac{1}{2}\\ \dfrac{2x^2-3x-2}{2x+1} &\text{khi }x>-\dfrac{1}{2}\end{cases}\)
\(\lim\limits_{x\to-\tfrac{1}{2}}f(x)\) với \(f(x)=\begin{cases}13x+4 &\text{khi }x\leq-\dfrac{1}{2}\\ \dfrac{2x^2+7x+3}{2x+1} &\text{khi }x>-\dfrac{1}{2}\end{cases}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giới hạn bên trái của hàm số \(f(x)=\dfrac{|2x+1|}{2x+1}\) tại \(x_0=-\dfrac{1}{2}\) bằng

\(-1\)
\(1\)
\(-\dfrac{1}{2}\)
Không tồn tại
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giới hạn của hàm số $$f(x)=\begin{cases}
\dfrac{x^2-4x+3}{|x-3|} &\text{khi }x< 3\\ |3x-11| &\text{khi }x\geq3
\end{cases}$$tại \(x_0=3\) bằng

\(-2\)
\(2\)
\(3\)
Không tồn tại
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giới hạn của hàm số $$f(x)=\begin{cases}
\dfrac{x^2-4x+3}{|x-3|} &\text{khi }x>3 \\
|3x-11| &\text{khi }x\leq3
\end{cases}$$tại \(x_0=3\) bằng

\(-2\)
\(2\)
\(3\)
Không tồn tại
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giới hạn \(\lim\limits_{x\to3^-}\dfrac{x^2+2x-15}{|x-3|}\) bằng

\(8\)
\(-\infty\)
\(-8\)
Không tồn tại
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Quan sát lời giải sau, lỗi sai bắt đầu từ dòng nào?

$$\begin{aligned}
\lim\limits_{x\to1^-}\dfrac{x^2-3x+2}{|x-1|}&=\lim\limits_{x\to1^-}\dfrac{x^2-3x+2}{x-1}\\
&=\lim\limits_{x\to1^-}\dfrac{(x-1)(x-2)}{x-1}\\
&=\lim\limits_{x\to1^-}(x-2)\\
&=1-2=-1.
\end{aligned}$$

Dòng 1
Dòng 2
Dòng 3
Dòng 4
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính giới hạn \(\lim\limits_{x\to2^-}\dfrac{|2-x|}{2x^2-5x+2}\).

\(-\infty\)
\(+\infty\)
\(-\dfrac{1}{3}\)
\(\dfrac{1}{3}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính giới hạn \(\lim\limits_{x\to(-2)^+}\dfrac{\left|3x+6\right|}{x+2}\).

\(-\infty\)
\(3\)
\(+\infty\)
\(0\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho $\lim\limits_{x\to x_0^+}f(x)=5$, $\lim\limits_{x\to x_0^-}f(x)=-5$. Chọn khẳng định đúng.

$\lim\limits_{x\to x_0}f(x)=\pm5$
$\lim\limits_{x\to x_0}f(x)=5$
$\lim\limits_{x\to x_0}f(x)=-5$
Không tồn tại $\lim\limits_{x\to x_0}f(x)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=\begin{cases}4x-1\text{ khi }x>2\\ 2x+1\text{ khi }x\le 2\end{cases}$. Tính $\lim\limits_{x\to2^{-}}f(x)$.

Không tồn tại $\lim\limits_{x\to2^{-}}f(x)$
$\lim\limits_{x\to2^{-}}f(x)=5$
$\lim\limits_{x\to2^{-}}f(x)=12$
$\lim\limits_{x\to2^{-}}f(x)=7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giới hạn \(\lim\limits_{x\to1}\dfrac{2x-7}{x-1}\) bằng

\(\dfrac{9}{2}\)
\(-\infty\)
\(+\infty\)
Không tồn tại
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giới hạn \(\lim\limits_{x\to1^-}\dfrac{2x-7}{x-1}\) bằng

\(0\)
\(\dfrac{9}{2}\)
\(+\infty\)
\(-\infty\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm giá trị của \(a\) để giới hạn \(\lim\limits_{x\to-\tfrac{1}{2}}f(x)\) với $$f(x)=\begin{cases}
13x+a &\text{khi }x\leq-\dfrac{1}{2}\\
\dfrac{2x^2+7x+3}{2x+1} &\text{khi }x>-\dfrac{1}{2}
\end{cases}$$tồn tại?

\(a=9\)
\(a=18\)
\(a=-4\)
\(a=4\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giới hạn của hàm số $$f(x)=\begin{cases}
2x+5 &\text{khi }x\geq4\\
\dfrac{x^2-16}{x-4} &\text{khi }x<4
\end{cases}$$tại \(x_0=4\) bằng

\(13\)
\(8\)
\(4\)
Không tồn tại
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giới hạn của hàm số $$f(x)=\begin{cases}
x^2+x+1 &\text{khi }x\leq1\\
x^2-4 &\text{khi }x>1
\end{cases}$$tại \(x_0=1\) bằng

\(1\)
\(-3\)
\(3\)
Không tồn tại
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giới hạn của hàm số $$f(x)=\begin{cases}
x^2+x+1 &\text{khi }x\leq1\\
5x^2-2 &\text{khi }x>1
\end{cases}$$tại \(x_0=1\) bằng

\(1\)
\(-3\)
\(3\)
Không tồn tại
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nếu hàm số \(y=f(x)\) thỏa mãn \(\lim\limits_{x\to1^-}f(x)=-\infty\) thì đồ thị hàm số \(y=f(x)\) có đường tiệm cận đứng là đường thẳng có phương trình

\(x=-1\)
\(x=1\)
\(y=1\)
\(y=-1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Giới hạn \(\lim\limits_{x\to1^+}\dfrac{x+3}{x-1}\) bằng

\(-\infty\)
\(+\infty\)
\(4\)
Không tồn tại
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính giới hạn \(\lim\limits_{x\to-3}\left|\dfrac{-x^2-x+6}{x^2+3x}\right|\).

\(\dfrac{1}{3}\)
\(\dfrac{2}{3}\)
\(\dfrac{5}{3}\)
\(\dfrac{3}{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính giới hạn \(\lim\limits_{x\to-\infty}\left(|x|^3+2x^2+3|x|\right)\).

\(0\)
\(+\infty\)
\(1\)
\(-\infty\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự