Giới hạn \(\lim\limits_{x\to-\infty}\dfrac{3-2x}{\sqrt{x^2+5}}\) bằng
\(2\) | |
\(-2\) | |
\(+\infty\) | |
\(-\infty\) |
Giới hạn \(\lim\limits_{x\to+\infty}\dfrac{3-2x}{\sqrt{x^2+5}}\) bằng
\(2\) | |
\(-2\) | |
\(+\infty\) | |
\(-\infty\) |
Giới hạn \(\lim\limits_{x\to+\infty}\dfrac{3x^2-4x+1}{-2x^2+x+1}\) bằng
\(-\dfrac{3}{2}\) | |
\(-\dfrac{2}{3}\) | |
\(\dfrac{1}{2}\) | |
\(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{\sqrt[3]{x^3+2x^2+1}}{\sqrt{2x^2+1}}\).
\(\dfrac{\sqrt{2}}{2}\) | |
\(0\) | |
\(-\dfrac{\sqrt{2}}{2}\) | |
\(1\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{\sqrt{4x^2-x+1}}{x+1}\).
\(2\) | |
\(-1\) | |
\(-2\) | |
\(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{2x-3}{\sqrt{x^2+1}-x}\).
\(-2\) | |
\(+\infty\) | |
\(3\) | |
\(-1\) |
Điểm nào sau đây không thuộc đồ thị hàm số $y=\dfrac{\sqrt{x^2-4x+4}}{x}$?
$A(2;0)$ | |
$B\left(3;\dfrac{1}{3}\right)$ | |
$C(1;-1)$ | |
$D(-1;-3)$ |
Hàm số nào sau đây có tập xác định là $\mathbb{R}$?
$y=\dfrac{x}{x^2-1}$ | |
$y=3x^3-2|x|-3$ | |
$y=3x^3-2\sqrt{x}-3$ | |
$y=\dfrac{\sqrt{x}}{x^2+1}$ |
Giới hạn \(\lim\limits_{x\to+\infty}\dfrac{1+3x-2x^2}{x^2+5}\) bằng
\(2\) | |
\(-2\) | |
\(+\infty\) | |
\(-\infty\) |
Giới hạn bên trái của hàm số \(f(x)=\dfrac{|2x+1|}{2x+1}\) tại \(x_0=-\dfrac{1}{2}\) bằng
\(-1\) | |
\(1\) | |
\(-\dfrac{1}{2}\) | |
Không tồn tại |
Hàm số \(f(x)=\begin{cases}\dfrac{\sqrt{1-3x+x^2}-\sqrt{1+x}}{x} &\text{khi }x\neq0\\
m &\text{khi }x=0\end{cases}\) liên tục tại \(x_0=0\) khi
\(m=4\) | |
\(m=-1\) | |
\(m=3\) | |
\(m=-2\) |
Giới hạn \(\lim\limits_{x\to3^-}\dfrac{x^2+2x-15}{|x-3|}\) bằng
\(8\) | |
\(-\infty\) | |
\(-8\) | |
Không tồn tại |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt{1+2x^2}-x\right)\).
\(0\) | |
\(+\infty\) | |
\(\sqrt{2}-1\) | |
\(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\dfrac{2x^2+5x-3}{x^2+6x+3}\).
\(-2\) | |
\(+\infty\) | |
\(3\) | |
\(2\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}x\left(\sqrt{4x^2+7x}+2x\right)\).
\(4\) | |
\(-\infty\) | |
\(6\) | |
\(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt[3]{3x^3-1}+\sqrt{x^2+2}\right)\).
\(\sqrt[3]{3}+1\) | |
\(+\infty\) | |
\(\sqrt[3]{3}-1\) | |
\(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to+\infty}\left(\sqrt{x^2+1}+x\right)\).
\(0\) | |
\(+\infty\) | |
\(\sqrt{2}-1\) | |
\(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to-\infty}\left(|x|^3+2x^2+3|x|\right)\).
\(0\) | |
\(+\infty\) | |
\(1\) | |
\(-\infty\) |
Tính giới hạn \(\lim\limits_{x\to0^+}\dfrac{\sqrt{x^2+x}-\sqrt{x}}{x^2}\).
\(0\) | |
\(-\infty\) | |
\(1\) | |
\(+\infty\) |
Tính giới hạn \(\lim\limits_{x\to3^-}\dfrac{3-x}{\sqrt{27-x^3}}\).
\(\dfrac{1}{3}\) | |
\(0\) | |
\(\dfrac{5}{3}\) | |
\(\dfrac{3}{5}\) |