Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{\pi}x^2\cos2x\mathrm{d}x$ bằng cách đặt $\begin{cases}u=x^2\\ \mathrm{d}v=\cos2x\mathrm{d}x\end{cases}$. Mệnh đề nào dưới đây đúng?
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}-2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+2\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ | |
$I=\dfrac{1}{2}x^2\sin2x\bigg|_{0}^{\pi}+\displaystyle\displaystyle\int\limits_{0}^{\pi}x\sin2x\mathrm{d}x$ |
Cho hàm số $f(x)=\begin{cases} x^2-1 &\text{khi }x\geq2\\ x^2-2x+3 &\text{khi }x< 2 \end{cases}$. Tích phân $\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}f\left(2\sin x+1\right)\cos x\mathrm{\,d}x$ bằng
$\dfrac{23}{3}$ | |
$\dfrac{23}{6}$ | |
$\dfrac{17}{6}$ | |
$\dfrac{17}{3}$ |
Tích phân \(I=\displaystyle\int\limits_{0}^{\pi}x^2\sin x\mathrm{\,d}x\) bằng
\(\pi^2-4\) | |
\(\pi^2+4\) | |
\(2\pi^2-3\) | |
\(2\pi^2+3\) |
Tích phân \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}x\sin x\mathrm{\,d}x\) bằng
\(\dfrac{\pi}{2}\) | |
\(\dfrac{\pi}{2}-1\) | |
\(1\) | |
\(\pi\) |
Giá trị của tích phân \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}x\sin x\mathrm{\,d}x\) bằng
\(\dfrac{4+\pi}{4\sqrt{2}}\) | |
\(\dfrac{4-\pi}{4\sqrt{2}}\) | |
\(\dfrac{2-\pi}{2\sqrt{2}}\) | |
\(\dfrac{2+\pi}{2\sqrt{2}}\) |
Tính \(I=\displaystyle\int\limits_0^{\tfrac{\pi}{3}}\sin{2x}\mathrm{\,d}x\).
\(I=-\dfrac{1}{4}\) | |
\(I=0,019\) | |
\(I=-\dfrac{3}{4}\) | |
\(I=\dfrac{3}{4}\) |
Tính tích phân \(I=\displaystyle\int\limits_0^{\tfrac{\pi}{2}}\left(\sin{2x}+\sin x\right)\mathrm{\,d}x\).
\(5\) | |
\(3\) | |
\(4\) | |
\(2\) |
Tính thể tích $V$ của vật thể giới hạn bởi hai mặt phẳng $x=0,\,x=\pi$. Biết rằng thiết diện của vật thể cắt bởi mặt phẳng vuông góc với $Ox$ tại điểm có hoành độ $x\,(0\leq x\leq\pi)$ là một tam giác vuông cân có cạnh huyền bằng $\sin x+2$.
$\dfrac{7\pi}{6}+1$ | |
$\dfrac{9\pi}{8}+1$ | |
$\dfrac{7\pi}{6}+2$ | |
$\dfrac{9\pi}{8}+2$ |
Tích phân $\displaystyle\displaystyle\int\limits_{0}^{10}x\mathrm{e}^{30x}\mathrm{\,d}x$ bằng
$\dfrac{1}{900}\left(299\mathrm{e}^{300}+1\right)$ | |
$300-900\mathrm{e}^{300}$ | |
$-300+900\mathrm{e}^{300}$ | |
$\dfrac{1}{900}\left(299\mathrm{e}^{300}-1\right)$ |
Tính tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{\tfrac{\pi}{4}}\sin x\mathrm{\,d}x$.
$I=1-\dfrac{\sqrt{2}}{2}$ | |
$I=-1+\dfrac{\sqrt{2}}{2}$ | |
$I=-\dfrac{\sqrt{2}}{2}$ | |
$I=\dfrac{\sqrt{2}}{2}$ |
Tích phân $I=\displaystyle\displaystyle\int\limits_{\tfrac{\pi}{4}}^{\tfrac{\pi}{3}}\dfrac{\mathrm{d}x}{\sin^2x}$ bằng
$\cot\dfrac{\pi}{3}-\cot\dfrac{\pi}{4}$ | |
$\cot\dfrac{\pi}{3}+\cot\dfrac{\pi}{4}$ | |
$-\cot\dfrac{\pi}{3}+\cot\dfrac{\pi}{4}$ | |
$-\cot\dfrac{\pi}{3}-\cot\dfrac{\pi}{4}$ |
Họ nguyên hàm của hàm số $f\left(x\right)=x-\sin2x$ là
$\dfrac{x^2}{2}+\cos2x+C$ | |
$\dfrac{x^2}{2}+\dfrac{1}{2}\cos2x+C$ | |
$x^2+\dfrac{1}{2}\cos2x+C$ | |
$\dfrac{x^2}{2}-\dfrac{1}{2}\cos2x+C$ |
Biết $\displaystyle\displaystyle\int\limits f(t)\mathrm{\,d}t=t^2+3t+C$. Tính $\displaystyle\displaystyle\int\limits f\left(\sin2x\right)\cos2x\mathrm{\,d}x$.
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^2x+6\sin{x}+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=2\sin^22x+6\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\dfrac{1}{2}\sin^22x+\dfrac{3}{2}\sin2x+C$ | |
$\displaystyle\displaystyle\int f\left(\sin2x\right)\cos2x\mathrm{\,d}x=\sin^22x+3\sin2x+C$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=-1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ | |
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{\sqrt{3}}{4}-1$ | |
$F\left(\dfrac{\pi}{6}\right)=\sqrt{3}-1$ | |
$F\left(\dfrac{\pi}{6}\right)=-\dfrac{5}{4}$ |
Biết rằng $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin(1-2x)$ và $F\left(\dfrac{1}{2}\right)=1$. Mệnh đề nào sau đây đúng?
$F(x)=\dfrac{1}{2}\cos(1-2x)+\dfrac{1}{2}$ | |
$F(x)=\cos(1-2x)$ | |
$F(x)=\cos(1-2x)+1$ | |
$F(x)=-\dfrac{1}{2}\cos(1-2x)+\dfrac{3}{2}$ |
Biết $\displaystyle\displaystyle\int\limits_{0}^{2}(3x-1)\mathrm{e}^{\tfrac{x}{2}}\mathrm{\,d}x=a+b\mathrm{e}$ với $a,\,b$ là các số nguyên. Giá trị của $a+b$ bằng
$12$ | |
$16$ | |
$6$ | |
$10$ |
Biết $F(x)$ là một nguyên hàm của hàm số $f(x)=\sin2x$ và $F\left(\dfrac{\pi}{4}\right)=1$. Tính $F\left(\dfrac{\pi}{6}\right)$.
$F\left(\dfrac{\pi}{6}\right)=0$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{3}{4}$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$ | |
$F\left(\dfrac{\pi}{6}\right)=\dfrac{5}{4}$ |
Cho hàm số $y=\sin2x$. Khẳng định nào sau đây là đúng?
$y^2-\left(y'\right)^2=4$ | |
$4y+y''=0$ | |
$4y-y''=0$ | |
$y=y'.\tan2x$ |
Cho hàm số $y=\sin^2x$. Khẳng định nào sau đây đúng?
$2y'+y''=\sqrt{2}\cos\left(2x-\dfrac{\pi}{4}\right)$ | |
$2y+y'.\tan x=0$ | |
$4y-y''=2$ | |
$4y'+y'''=0$ |