Ngân hàng bài tập

Bài tập tương tự

A

Biết $\displaystyle\displaystyle\int\limits_{-1}^1\left(\dfrac{9}{x-3}-\dfrac{7}{x-2}\right)\mathrm{\,d}x=a\ln{3}-b\ln{2}$. Tính giá trị $P=a^2+b^2$.

$P=32$
$P=130$
$P=2$
$P=16$
2 lời giải Sàng Khôn
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_{0}^{1}\dfrac{x^2+1}{x+1}\mathrm{\,d}x=a+b\ln c\), với \(a\in\mathbb{Q}\), \(b\in\mathbb{Z}\), \(c\) là số nguyên tố. Ta có \(2a+b+c\) bằng

\(5\)
\(4\)
\(3\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Giả sử tích phân \(I=\displaystyle\int\limits_{1}^{6}\dfrac{1}{2x+1}\mathrm{\,d}x=\ln M\), tìm \(M\).

\(M=13\)
\(M=4,33\)
\(M=\sqrt{\dfrac{13}{3}}\)
\(M=\dfrac{13}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tích phân \(I=\displaystyle\int\limits_0^1\dfrac{\left(x-1\right)^2}{x^2+1}\mathrm{\,d}x=a-\ln b\), trong đó \(a,\,b\) là các số nguyên. Tính giá trị của biểu thức \(a+b\).

\(1\)
\(0\)
\(-1\)
\(3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết rằng \(\displaystyle\int\limits_2^7\dfrac{x\mathrm{\,d}x}{x^2+1}=a\ln2-b\ln5\) với \(a,\,b\in\Bbb{Q}\). Giá trị của \(2a+b\) bằng

\(\dfrac{3}{2}\)
\(\dfrac{1}{2}\)
\(1\)
\(2\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho \(\displaystyle\int\limits_{\tfrac{\pi}{6}}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\sin x+1}\mathrm{\,d}x=a\ln2+b\ln3\) (\(a,\,b\in\mathbb{Z}\)). Khi đó, giá trị của \(a\cdot b\) là

\(2\)
\(-2\)
\(-4\)
\(3\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Kết quả của phép tính tích phân \(\displaystyle\int\limits_{0}^{1}\ln(2x+1)\mathrm{\,d}x=a\ln3+b\), (\(a,\,b\in\mathbb{Q}\)) khi đó giá trị của \(ab^3\) bằng

\(-\dfrac{3}{2}\)
\(3\)
\(1\)
\(\dfrac{3}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Giả sử \(\displaystyle\int\limits_{3}^{5}\dfrac{\mathrm{d}x}{x^2-x}=a\ln5+b\ln3+c\ln2\). Tính giá trị biểu thức \(S=-2a+b+3c^2\).

\(S=3\)
\(S=6\)
\(S=-2\)
\(S=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho \(\displaystyle\int\limits_{0}^{\tfrac{\pi}{2}}\dfrac{\cos x}{\left(\sin x\right)^2-5\sin x+6}\mathrm{\,d}x=a\ln\dfrac{4}{c}+b\), với \(a,\,b\) là các số hữu tỉ, \(c>0\). Tính tổng \(S=a+b+c\).

\(S=3\)
\(S=4\)
\(S=0\)
\(S=1\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Biết rằng \(\displaystyle\int\limits_{1}^{5}\dfrac{1}{2x-1}\mathrm{\,d}x=\ln a\). Giá trị của \(a\) là

\(81\)
\(27\)
\(3\)
\(9\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết rằng $\displaystyle\displaystyle\int\limits_{1}^{5}\dfrac{3}{x^2+3x}\mathrm{d}x=a\ln5+b\ln2$ $\left(a,\,b\in\mathbb{Z}\right)$. Mệnh đề nào sau đây đúng?

$a+2b=0$
$2a-b=0$
$a-b=0$
$a+b=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết tích phân $\displaystyle\displaystyle\int\limits_{0}^{1}\dfrac{2x+3}{2-x}\mathrm{d}x=a\ln2+b$ ($a,\,b\in\mathbb{Z}$), giá trị của $a$ bằng

$7$
$2$
$3$
$1$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho $\displaystyle\displaystyle\int\limits_0^1\dfrac{\mathrm{d}x}{\sqrt{x+1}+\sqrt{x}}=\dfrac{2}{3}\left(\sqrt{a}-b\right)$ với $a$, $b$ là các số dương. Giá trị của biểu thức $T=a+b$ là

$10$
$7$
$6$
$8$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Có bao nhiêu số nguyên $a\in(1;17)$ sao cho $\displaystyle\displaystyle\int\limits_1^5\dfrac{\mathrm{d}x}{2x-1}>\ln\left(\dfrac{a}{2}\right)$?

$4$
$9$
$15$
$0$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Biết $\displaystyle\displaystyle\int\limits_{0}^{2}(3x-1)\mathrm{e}^{\tfrac{x}{2}}\mathrm{\,d}x=a+b\mathrm{e}$ với $a,\,b$ là các số nguyên. Giá trị của $a+b$ bằng

$12$
$16$
$6$
$10$
2 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $y=f(x)$ liên tục trên khoảng $(0;+\infty)$. Biết $f(1)=1$ và $f(x)=xf'(x)+\ln x$, $\forall x\in(0;+\infty)$. Giá trị của $f(\mathrm{e})$ bằng

$\mathrm{e}$
$\dfrac{1}{\mathrm{e}}$
$1$
$2$
1 lời giải Sàng Khôn
Lời giải Tương tự
C

Tính tích phân \(I=\displaystyle\int\limits_{1}^{\mathrm{e}}\dfrac{\sqrt{2+\ln x}}{2x}\mathrm{\,d}x\).

\(\dfrac{3\sqrt{3}+2\sqrt{2}}{3}\)
\(\dfrac{\sqrt{3}+\sqrt{2}}{3}\)
\(\dfrac{\sqrt{3}-\sqrt{2}}{3}\)
\(\dfrac{3\sqrt{3}-2\sqrt{2}}{3}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(\displaystyle\int\limits_{1}^{2}\dfrac{\mathrm{d}x}{(x+1)(2x+1)}=a\ln2+b\ln3+c\ln5\). Khi đó giá trị \(a+b+c\) bằng

\(1\)
\(0\)
\(2\)
\(-3\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Hàm số \(y=f(x)\) liên tục trên \([1;4]\) và thỏa mãn \(f(x)=\dfrac{f\left(2\sqrt{x}-1\right)}{\sqrt{x}}+\dfrac{\ln x}{x}\). Tính tích phân \(I=\displaystyle\int\limits_{3}^{4}f(x)\mathrm{\,d}x\).

\(I=3+2\ln^22\)
\(I=\ln^2\)
\(I=2\ln2\)
\(I=2\ln^22\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Biết \(\displaystyle\int\limits_{\ln2}^{\ln5}(x+1)\mathrm{e}^x \mathrm{\,d}x=a\ln5+b\ln2\), với \(a,\,b\) là các số nguyên. Tính \(T=3a-2b\).

\(T=19\)
\(T=-4\)
\(T=11\)
\(T=-16\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự