Cho hàm số \(y=x(1-x)\left(x^2+1\right)\) có đồ thị \(\left(\mathscr{C}\right)\). Mệnh đề nào sau đây là đúng?
![]() | \(\left(\mathscr{C}\right)\) không cắt trục hoành |
![]() | \(\left(\mathscr{C}\right)\) cắt trục hoành tại \(3\) điểm |
![]() | \(\left(\mathscr{C}\right)\) cắt trục hoành tại \(1\) điểm |
![]() | \(\left(\mathscr{C}\right)\) cắt trục hoành tại \(2\) điểm |
Tìm các giá trị của tham số \(m\) để đường cong \(\left(\mathscr{C}\right)\colon y=x^3-3x+m\) cắt trục hoành tại \(3\) điểm phân biệt.
![]() | \(m\in(2;+\infty)\) |
![]() | \(m\in(-2;2)\) |
![]() | \(m\in\mathbb{R}\) |
![]() | \(m\in(-\infty;-2)\) |
Đồ thị hàm số \(y=x^4+3x^2-4\) cắt trục hoành tại bao nhiêu điểm?
![]() | \(4\) |
![]() | \(2\) |
![]() | \(3\) |
![]() | \(0\) |
Số giao điểm của đồ thị hàm số \(y=x^4-5x^2+4\) với trục hoành là
![]() | \(3\) |
![]() | \(2\) |
![]() | \(4\) |
![]() | \(1\) |
Số giao điểm của đồ thị hàm số \(y=-2x^3-3x^2+1\) với trục hoành là
![]() | \(1\) |
![]() | \(0\) |
![]() | \(3\) |
![]() | \(2\) |
Số giao điểm của đồ thị hàm số \(y=x^3-3x+1\) và trục hoành là
![]() | \(3\) |
![]() | \(0\) |
![]() | \(2\) |
![]() | \(1\) |
Tập hợp các tham số thực \(m\) để đồ thị của hàm số \(y=x^3+(m-4)x+2m\) cắt trục hoành tại ba điểm phân biệt là
![]() | \((-\infty;1]\setminus\{-8\}\) |
![]() | \((-\infty;1)\setminus\{-8\}\) |
![]() | \((-\infty;1]\) |
![]() | \((-\infty;1)\) |
Đồ thị của hàm số nào dưới đây cắt trục hoành tại $3$ điểm phân biệt?
![]() | $y=x^3-3x+3$ |
![]() | $y=x^3+3x+1$ |
![]() | $y=-x^3+3x+5$ |
![]() | $y=x^3-3x+1$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình $f(x)=2$ là
![]() | $1$ |
![]() | $0$ |
![]() | $2$ |
![]() | $3$ |
Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
![]() | $(0;-2)$ |
![]() | $(2;0)$ |
![]() | $(-2;0)$ |
![]() | $(0;2)$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong như hình vẽ bên.
Hỏi phương trình $\big|f(x)-1\big|=1$ có bao nhiêu nghiệm?
![]() | $6$ |
![]() | $3$ |
![]() | $4$ |
![]() | $5$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ dưới đây:
Số nghiệm của phương trình $f^2(x)-4f(x)+3=0$ là
![]() | $5$ |
![]() | $3$ |
![]() | $6$ |
![]() | $4$ |
Đồ thị của hàm số nào dưới đây cắt trục hoành tại $3$ điểm phân biệt?
![]() | $y=x^3-3x+3$ |
![]() | $y=x^3+3x+1$ |
![]() | $y=-x^3+3x+5$ |
![]() | $y=x^3-3x+1$ |
Cho hàm số $f(x)=ax^4+bx^2+c$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình $f(x)=1$ là
![]() | $1$ |
![]() | $2$ |
![]() | $4$ |
![]() | $3$ |
Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}\setminus\{-1\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình bên.
Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho phương trình $f(x)=m$ có đúng ba nghiệm thực phân biệt.
![]() | $(-4;2)$ |
![]() | $[-4;2)$ |
![]() | $(-4;2]$ |
![]() | $(-\infty;2]$ |
Cho hàm số bậc hai $y=f(x)$ có đồ thị như hình vẽ.
Tìm số nghiệm thực của phương trình $\big|f\big(x^3-2x^2+x\big)\big|=2$.
![]() | $1$ |
![]() | $3$ |
![]() | $4$ |
![]() | $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.
Tìm số nghiệm thực của phương trình $\big|f\big(x^2-4x\big)\big|=\dfrac{3}{4}$.
![]() | $12$ |
![]() | $6$ |
![]() | $10$ |
![]() | $8$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.
Tìm số nghiệm thực của phương trình $\big|f\big(x^3-3x\big)\big|=2$.
![]() | $12$ |
![]() | $6$ |
![]() | $10$ |
![]() | $8$ |
Cho hàm số bậc bốn $f(x)=ax^4+bx^3+cx^2+dx+e$ có đồ thị như hình vẽ.
Số nghiệm của phương trình $f\big(f(x)\big)+1=0$ là
![]() | $3$ |
![]() | $5$ |
![]() | $4$ |
![]() | $6$ |
Cho hàm số $y=f\left(x\right)$ là đa thức bậc ba có đồ thị như hình bên.
Số nghiệm thuộc khoảng $\left(0;3\pi\right)$ của phương trình $f\left(\cos{x}+1\right)=\cos{x}+1$ là
![]() | $5$ |
![]() | $4$ |
![]() | $6$ |
![]() | $7$ |