Số giao điểm của đồ thị hàm số \(y=x^4-5x^2+4\) với trục hoành là
![]() | \(3\) |
![]() | \(2\) |
![]() | \(4\) |
![]() | \(1\) |
Cho hàm số $f(x)=ax^4+bx^2+c$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình $f(x)=1$ là
![]() | $1$ |
![]() | $2$ |
![]() | $4$ |
![]() | $3$ |
Tìm các giá trị của tham số \(m\) để đường cong \(\left(\mathscr{C}\right)\colon y=x^3-3x+m\) cắt trục hoành tại \(3\) điểm phân biệt.
![]() | \(m\in(2;+\infty)\) |
![]() | \(m\in(-2;2)\) |
![]() | \(m\in\mathbb{R}\) |
![]() | \(m\in(-\infty;-2)\) |
Cho đồ thị \(\left(\mathscr{C}\right)\colon y=x^4-2x^2\). Đường thẳng nào sau đây cắt \(\left(\mathscr{C}\right)\) tại \(2\) điểm phân biệt?
![]() | \(y=0\) |
![]() | \(y=1\) |
![]() | \(y=-\dfrac{3}{2}\) |
![]() | \(y=-\dfrac{1}{2}\) |
Số giao điểm của đồ thị hàm số \(y=-2x^3-3x^2+1\) với trục hoành là
![]() | \(1\) |
![]() | \(0\) |
![]() | \(3\) |
![]() | \(2\) |
Cho hàm số \(y=x(1-x)\left(x^2+1\right)\) có đồ thị \(\left(\mathscr{C}\right)\). Mệnh đề nào sau đây là đúng?
![]() | \(\left(\mathscr{C}\right)\) không cắt trục hoành |
![]() | \(\left(\mathscr{C}\right)\) cắt trục hoành tại \(3\) điểm |
![]() | \(\left(\mathscr{C}\right)\) cắt trục hoành tại \(1\) điểm |
![]() | \(\left(\mathscr{C}\right)\) cắt trục hoành tại \(2\) điểm |
Cho hàm số \(y=(x-2)\left(x^2-5x+6\right)\) có đồ thị \(\left(\mathscr{C}\right)\). Mệnh đề nào sau đây là đúng?
![]() | \(\left(\mathscr{C}\right)\) không cắt trục hoành |
![]() | \(\left(\mathscr{C}\right)\) cắt trục hoành tại \(3\) điểm |
![]() | \(\left(\mathscr{C}\right)\) cắt trục hoành tại \(1\) điểm |
![]() | \(\left(\mathscr{C}\right)\) cắt trục hoành tại \(2\) điểm |
Số giao điểm của đồ thị hàm số \(y=x^3-3x+1\) và trục hoành là
![]() | \(3\) |
![]() | \(0\) |
![]() | \(2\) |
![]() | \(1\) |
Cho hàm số \(y=f\left(x\right)\) có đồ thị trong hình vẽ trên. Số nghiệm của phương trình \(f\left(x\right)=-1\) là
![]() | \(3\) |
![]() | \(2\) |
![]() | \(1\) |
![]() | \(4\) |
Tập hợp các tham số thực \(m\) để đồ thị của hàm số \(y=x^3+(m-4)x+2m\) cắt trục hoành tại ba điểm phân biệt là
![]() | \((-\infty;1]\setminus\{-8\}\) |
![]() | \((-\infty;1)\setminus\{-8\}\) |
![]() | \((-\infty;1]\) |
![]() | \((-\infty;1)\) |
Tính diện tích hình phẳng giới hạn bởi \(\left(\mathscr{C}\right)\colon y=x^4-2x^2+1\) và trục hoành.
![]() | \(\dfrac{8}{15}\) |
![]() | \(-\dfrac{15}{16}\) |
![]() | \(\dfrac{15}{8}\) |
![]() | \(\dfrac{16}{15}\) |
Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho đồ thị hàm số $y=x^4-2mx^2+2m^4-m$ có $3$ điểm cực trị đều nằm trên các trục tọa độ.
![]() | $\big\{0;1\big\}$ |
![]() | $\big\{1\big\}$ |
![]() | $\big\{-1;1\big\}$ |
![]() | $\big\{0\big\}$ |
Đồ thị của hàm số nào dưới đây cắt trục hoành tại $3$ điểm phân biệt?
![]() | $y=x^3-3x+3$ |
![]() | $y=x^3+3x+1$ |
![]() | $y=-x^3+3x+5$ |
![]() | $y=x^3-3x+1$ |
Cho hàm số $f(x)=ax^4+bx^2+c$ ($a\neq0$) có đồ thị là đường cong trong hình bên.
Số nghiệm của phương trình $f(x)-1=0$ là
![]() | $2$ |
![]() | $1$ |
![]() | $4$ |
![]() | $3$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.
Số nghiệm thực của phương trình $f(x)=2$ là
![]() | $1$ |
![]() | $0$ |
![]() | $2$ |
![]() | $3$ |
Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình bên.
Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là
![]() | $(0;-2)$ |
![]() | $(2;0)$ |
![]() | $(-2;0)$ |
![]() | $(0;2)$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong như hình vẽ bên.
Hỏi phương trình $\big|f(x)-1\big|=1$ có bao nhiêu nghiệm?
![]() | $6$ |
![]() | $3$ |
![]() | $4$ |
![]() | $5$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như hình vẽ dưới đây:
Số nghiệm của phương trình $f^2(x)-4f(x)+3=0$ là
![]() | $5$ |
![]() | $3$ |
![]() | $6$ |
![]() | $4$ |
Đồ thị của hàm số nào dưới đây cắt trục hoành tại $3$ điểm phân biệt?
![]() | $y=x^3-3x+3$ |
![]() | $y=x^3+3x+1$ |
![]() | $y=-x^3+3x+5$ |
![]() | $y=x^3-3x+1$ |
Cho hàm số $y=f(x)$ xác định trên $\mathbb{R}\setminus\{-1\}$, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình bên.
Tìm tập hợp tất cả các giá trị thực của tham số $m$ sao cho phương trình $f(x)=m$ có đúng ba nghiệm thực phân biệt.
![]() | $(-4;2)$ |
![]() | $[-4;2)$ |
![]() | $(-4;2]$ |
![]() | $(-\infty;2]$ |