Ngân hàng bài tập

Bài tập tương tự

B

Hàm số $y=\dfrac{1}{3}x^3-mx^2+\big(m^2-m-1\big)x+m^3$ đạt cực đại tại điểm $x=1$ thì giá trị của tham số $m$ bằng

$\left[\begin{array}{l}m=0\\ m=3\end{array}\right.$
$m=0$
$m=-3$
$m=3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có tât cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?

$8$
$9$
$7$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Số giá trị nguyên của tham số $m$ để hàm số $y=x^3-(m+1)x^2+3x+1$ đồng biến trên $\mathbb{R}$ là

$4$
$6$
$5$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên.

Số các giá trị nguyên của tham số $m\in(-2019;2023]$ để phương trình $4^{f(x)}-(m-1)2^{f(x)+1}+2m-3=0$ có đúng ba nghiệm là

$2020$
$2019$
$2021$
$2022$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số $m$ sao cho ứng với mỗi $m$, hàm số $y=-x^3+3x^2-3mx+\dfrac{5}{3}$ có đúng một cực trị thuộc khoảng $(-2;5)$?

$16$
$6$
$17$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$

$21$
$10$
$8$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?

$12$
$11$
$6$
$5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong trong hình bên.

Có bao nhiêu giá trị nguyên của tham số $m$ để phương trình $f(x)=m$ có ba nghiệm thực phân biệt?

$2$
$5$
$3$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Có tất cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?

$8$
$9$
$7$
$6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Tìm các giá trị thực của tham số $m$ để hàm số $f(x)=-x^3-3x+m$ có giá trị nhỏ nhất trên đoạn $[-1;1]$ bằng $0$.

$m=-4$
$m=-2$
$m=2$
$m=4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=4x^3+mx^2-3x$. Tìm các giá trị của tham số $m$ sao cho $x_1+4x_2=0$.

$m=0$
$m=\pm\dfrac{9}{2}$
$m=\pm\dfrac{3}{2}$
$m=\pm\dfrac{1}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Gọi $x_1,\,x_2$ là hai điểm cực trị của hàm số $y=x^3-3mx^2+3\big(m^2-1\big)x-m^3+m$. Tìm các giá trị của tham số $m$ sao cho $x_1^2+x_2^2-x_1x_2=7$.

$m=0$
$m=\pm\dfrac{9}{2}$
$m=\pm\dfrac{1}{2}$
$m=\pm2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Gọi $S$ là tập hợp các giá trị nguyên để hàm số $y=\dfrac{x^3}{3}-(m+1)x^2+(m-2)x+2m-3$ đạt cực trị tại hai điểm $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=18$. Tính tổng $P$ của tất cả các giá trị $m$ trong $S$.

$P=-4$
$P=1$
$P=-\dfrac{3}{2}$
$P=-5$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm giá trị của tham số $m$ để hàm số $y=x^3-3x^2+mx-1$ có hai điểm cực trị $x_1,\,x_2$ thỏa mãn $x_1^2+x_2^2=6$.

$m=1$
$m=-1$
$m=3$
$m=-3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.

$\left(-\infty;-\dfrac{14}{15}\right)$
$\left(-\infty;-\dfrac{14}{15}\right]$
$\left[-2;-\dfrac{14}{15}\right]$
$\left[-\dfrac{14}{15};+\infty\right)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.

$(-\infty;6]$
$(-\infty;3]$
$(-\infty;3)$
$[3;6]$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f(x)=x^3+ax^2+bx+c$ với $a,\,b,\,c$ là các số thực. Biết hàm số $g(x)=f(x)+f'(x)+f''(x)$ có hai giá trị cực trị là $-3$ và $6$. Diện tích hình phẳng giới hạn bởi các đường $y=\dfrac{f(x)}{g(x)+6}$ và $y=1$ bằng

$2\ln3$
$\ln3$
$\ln18$
$2\ln2$
1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Cho hàm số $f(x)=ax^3+bx^2-36x+c$ ($a\neq0$, $a,\,b,\,c\in\mathbb{R}$), có hai điểm cực trị là $-6$ và $2$. Gọi $y=g(x)$ là đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y=f(x)$. Diện tích hình phẳng giới hạn bởi hai đường $y=f(x)$ và $y=g(x)$ bằng

$160$
$672$
$128$
$64$
2 lời giải Sàng Khôn
Lời giải Tương tự

Cho hàm số $f\left(x\right)=x^3-2x^2+mx-3$ . Tìm $m$ để $f'\left(x\right)< 0$ với mọi $x\in\left(0;2\right)$.

1 lời giải Sàng Khôn
Lời giải Tương tự
SS

Gọi $M(a;b)$ là điểm thuộc đồ thị hàm số $y=f(x)=x^3-3x^2+2$ $(\mathscr{C})$ sao cho tiếp tuyến của $(\mathscr{C})$ tại điểm $M$ có hệ số góc nhỏ nhất. Tính $a+b$.

$-3$
$0$
$1$
$2$
1 lời giải Sàng Khôn
Lời giải Tương tự