Cho hàm số $y=\dfrac{-x+1}{2x-1}$ có đồ thị $(\mathscr{C})$ và đường thẳng $(d)\colon y=x+m$. Với mọi giá trị thực của $m$ đường thẳng $(d)$ luôn cắt đồ thị $(\mathscr{C})$ tại hai điểm phân biệt $A$ và $B$. Gọi $k_1,\,k_2$ lần lượt là hệ số góc của các tiếp tuyến với $(\mathscr{C})$ tại $A$ và $B$. Giá trị nhỏ nhất của $T=k_1^{2022}+k_2^{2022}$ bằng
![]() | $\dfrac{1}{2}$ |
![]() | $2$ |
![]() | $\dfrac{2}{3}$ |
![]() | $1$ |
Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=\dfrac{x-1}{x+2}$ tại điểm có tung độ bằng $2$.
![]() | $y=-\dfrac{1}{3}x+\dfrac{1}{3}$ |
![]() | $y=\dfrac{1}{3}x+\dfrac{11}{3}$ |
![]() | $y=\dfrac{1}{3}x-\dfrac{11}{3}$ |
![]() | $y=\dfrac{1}{3}x+\dfrac{1}{3}$ |
Cho hàm số $y=f(x)=x^3-5x^2+2$ có đồ thị $(\mathscr{C})$. Có bao nhiêu tiếp tuyến của $(\mathscr{C})$ song song với đường thẳng $y=-7x$?
![]() | $3$ |
![]() | $4$ |
![]() | $2$ |
![]() | $1$ |
Cho hàm số $y=\dfrac{2x+1}{x-1}$ có đồ thị là $(\mathscr{C})$. Viết phương trình tiếp tuyến của $(\mathscr{C})$ biết tiếp tuyến vuông góc với đường thẳng có phương trình $x-3y+2019=0$.
Phương trình tiếp tuyến của đồ thị hàm số $y=\dfrac{1}{2}x^2-2x+1$ biết tiếp tuyến song song với đường thẳng $y=2x+3$ là
![]() | $y=2x+5$ |
![]() | $y=3x+5$ |
![]() | $y=-2x+7$ |
![]() | $y=2x–7$ |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{x-2}{2x+1}\) vuông góc với đường thẳng \(y=-\dfrac{1}{5}x\) là
![]() | \(y=5x+3\) và \(y=5x-2\) |
![]() | \(y=5x-8\) và \(y=5x-2\) |
![]() | \(y=5x+8\) và \(y=5x-2\) |
![]() | \(y=5x+8\) và \(y=5x+2\) |
Tìm tất cả các phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x+1}{x-1}\) song song với đường thẳng \(y=-3x+15\).
![]() | \(y=-3x+1\), \(y=-3x-7\) |
![]() | \(y=-3x-1\), \(y=-3x+11\) |
![]() | \(y=-3x-1\) |
![]() | \(y=-3x+11\), \(y=-3x+5\) |
Viết phương trình tiếp tuyến của đồ thị \(y=\dfrac{x-1}{x+1}\), biết tiếp tuyến có hệ số góc là \(\dfrac{1}{2}\).
![]() | \(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) |
![]() | \(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) |
![]() | \(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) |
![]() | \(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) |
Phương trình tiếp tuyến với đồ thị hàm số \(y=\dfrac{2x-4}{x-4}\) tại điểm có tung độ bằng \(3\) là
![]() | \(x+4y-20=0\) |
![]() | \(x+4y-5=0\) |
![]() | \(4x+y-2=0\) |
![]() | \(4x+y-5=0\) |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{4}{x-1}\) tại điểm có hoành độ \(x_0=-1\) là
![]() | \(y=-x-3\) |
![]() | \(y=x-1\) |
![]() | \(y=-x+2\) |
![]() | \(y=-x-1\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x-1}{x+1}\) tại điểm \(M(0;-1)\) là
![]() | \(y=3x+1\) |
![]() | \(y=3x-1\) |
![]() | \(y=-3x-1\) |
![]() | \(y=-3x+1\) |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{x+1}{x-5}\) tại điểm \(A(-1;0)\) có hệ số góc bằng
![]() | \(\dfrac{1}{6}\) |
![]() | \(-\dfrac{1}{6}\) |
![]() | \(\dfrac{6}{25}\) |
![]() | \(-\dfrac{6}{25}\) |
Đường thẳng nào sau đây là tiếp tuyến của đồ thị hàm số \(y=\dfrac{3x-1}{x+2}\) tại điểm có hoành độ bằng \(-1\)?
![]() | \(y=6x+1\) |
![]() | \(y=5x+1\) |
![]() | \(y=-4x\) |
![]() | \(y=7x+3\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{x-1}{x+1}\) tại điểm \(C(-2;3)\) là
![]() | \(y=-2x+7\) |
![]() | \(y=2x+7\) |
![]() | \(y=2x+1\) |
![]() | \(y=-2x-1\) |
Hệ số góc của tiếp tuyến với đồ thị hàm số \(y=\dfrac{3x-1}{1-2x}\) tại điểm có hoành độ \(x=1\) là
![]() | \(1\) |
![]() | \(5\) |
![]() | \(-1\) |
![]() | \(-5\) |
Tiếp tuyến của đường cong \(\left(\mathscr{C}\right)\colon y=\dfrac{2x+1}{x-1}\) tại điểm \(M(2;5)\) cắt các trục tọa độ \(Ox\), \(Oy\) lần lượt tại \(A\) và \(B\). Tính diện tích tam giác \(OAB\).
![]() | \(\dfrac{121}{6}\) |
![]() | \(\dfrac{121}{3}\) |
![]() | \(-\dfrac{121}{6}\) |
![]() | \(-\dfrac{121}{3}\) |
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?
![]() | $4$ |
![]() | $2$ |
![]() | $1$ |
![]() | $3$ |
Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình vẽ bên.
Kết luận nào sau đây đúng?
![]() | $ad>0$, $bc< 0$ |
![]() | $ad< 0$, $bc>0$ |
![]() | $ad< 0$, $bc< 0$ |
![]() | $ad>0$, $bc>0$ |
Hàm số nào dưới đây có bảng biến thiên như hình bên?
![]() | $y=-x^3+3x+1$ |
![]() | $y=\dfrac{x-1}{x+1}$ |
![]() | $y=\dfrac{x+1}{x-1}$ |
![]() | $y=x^4-x^2+1$ |
Đường tiệm cận ngang của đồ thị hàm số $y=\dfrac{3x-4}{x-1}$ là
![]() | $x=3$ |
![]() | $y=1$ |
![]() | $x=1$ |
![]() | $y=3$ |