Cho hàm số $f\left(x\right)=\sqrt{2x-1}$. Tính $f'''\left(1\right)$.
$3$ | |
$-3$ | |
$\dfrac{3}{2}$ | |
$0$ |
Cho $f\left(x\right)=\sqrt{1+3x}-\sqrt[3]{1+2x}$, $g\left(x\right)=\sin x$. Tính giá trị của $\dfrac{f'\left(0\right)}{g'\left(0\right)}$.
$\dfrac{5}{6}$ | |
$-\dfrac{5}{6}$ | |
$0$ | |
$1$ |
Tính đạo hàm của hàm số \(f(x)=\dfrac{x}{\sqrt{4-x^2}}\) tại điểm \(x=0\).
\(f'(0)=\dfrac{1}{2}\) | |
\(f'(0)=\dfrac{1}{3}\) | |
\(f'(0)=1\) | |
\(f'(0)=2\) |
Cho hàm số $f(x)=\ln\big(x^2+1\big)$. Giá trị $f'(2)$ bằng
$\dfrac{4}{5}$ | |
$\dfrac{4}{3\ln2}$ | |
$\dfrac{4}{2\ln5}$ | |
$2$ |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
$m=1$ | |
$m=4$ | |
$m=13$ | |
$m=8$ |
Cho hàm số $f\left(x\right)$ thỏa mãn $f\left(2\right)=25$ và $f'\left(x\right)=4x\sqrt{f\left(x\right)}$ với mọi $x\in\mathbb{R}$. Khi đó $\displaystyle\displaystyle\int\limits_2^3f\left(x\right)\mathrm{\,d}x$ bằng
$\dfrac{1073}{15}$ | |
$\dfrac{458}{15}$ | |
$\dfrac{838}{15}$ | |
$\dfrac{1016}{15}$ |
Viết phương trình tiếp tuyến $\Delta$ của đồ thị hàm số $y=\sqrt{x}$, biết tiếp tuyến này vuông góc với đường thẳng $d\colon4x+y-1=0$.
Điện lượng truyền trong dây dẫn có phương trình $Q=t^2$. Tính cường độ dòng điện tức thời tại thời điểm $t_0=5$ (giây).
$3$(A) | |
$25$(A) | |
$10$(A) | |
$2$(A) |
Tính đạo hàm của hàm số $y=\sqrt{x+\cos x}$.
$y'=\dfrac{1+\sin x}{2\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{2\sqrt{x+\cos x}}$ | |
$y'=\dfrac{1-\sin x}{2\sqrt{x+\sin x}}$ |
Một chất điểm chuyển động có phương trình $s=t^3-2t$ ($t$ tính bằng giây, $s$ tính bằng mét). Tính vận tốc của chất điểm tại thời điểm $t_0=4$ (giây)?
$64$m/s | |
$46$m/s | |
$56$m/s | |
$22$m/s |
Cho hai hàm số $f(x)=x^2+2$, $g(x)=\dfrac{1}{1-x}$. Tính $\dfrac{f’(1)}{g’(0)}$.
$0$ | |
$-2$ | |
$2$ | |
$1$ |
Một chất điểm chuyển động có phương trình $s=t^3+3t$ ($t$ tính bằng giây, $s$ tính bằng mét). Tính vận tốc của chất điểm tại thời điểm $t_0=2$ (giây).
$12$m/s | |
$15$m/s | |
$14$m/s | |
$7$m/s |
Cho hàm số $y=f\left(x\right)$ xác định trên $\left(a;b\right)$, $x_0\in\left(a;b\right)$. Đạo hàm của hàm số $y=f\left(x\right)$ tại điểm $x_0$ là
$f'\left(x_0\right)=\lim\limits_{\Delta y\to0}\dfrac{\Delta y}{\Delta x}$ | |
$f'\left(x_0\right)=\lim\limits_{\Delta x\to0}\dfrac{\Delta y}{\Delta x}$ | |
$f'\left(x_0\right)=\lim\limits_{x\to0}\dfrac{\Delta y}{\Delta x}$ | |
$f'\left(x_0\right)=\lim\limits_{x\to0}\dfrac{\Delta x}{\Delta y}$ |
Đạo hàm của hàm số $y=\sqrt{x^2+1}$ là
$y'=\dfrac{x}{2\sqrt{x^2+1}}$ | |
$y'=\dfrac{1}{\sqrt{x^2+1}}$ | |
$y'=\dfrac{x^2+1}{2\sqrt{x^2+1}}$ | |
$y'=\dfrac{x}{\sqrt{x^2+1}}$ |
Một chất điểm chuyển động theo quy luật $s\left(t\right)=t^2-\dfrac{1}{6}t^3$ (m). Tìm thời điểm $t$ (giây) mà tại đó vận tốc $v$(m/s) của chuyển động đạt giá trị lớn nhất.
$t=2$ | |
$t=0.5$ | |
$t=2.5$ | |
$t=1$ |
Cho chuyển động thẳng xác định bởi phương trình $S=-t^3+3t^2+9t$, trong đó $t$ tính bằng giây và $S$ tính bằng mét. Tính vận tốc của chuyển động tại thời điểm gia tốc triệt tiêu.
$12\,\text{m/s}$ | |
$0\,\text{m/s}$ | |
$11\,\text{m/s}$ | |
$6\,\text{m/s}$ |
Một chất điểm chuyển động trong $20$ giây đầu tiên có phương trình $s\left(t\right)=\dfrac{1}{12}t^4-t^3+6t^2+10t$, trong đó $t>0$ với $t$ tính bằng giây $\left(s\right)$ và $s\left(t\right)$ tính bằng mét. Hỏi tại thời điểm gia tốc của vật đạt giá trị nhỏ nhất thì vận tốc của vật bằng bao nhiêu?
$17$(m/s) | |
$18$(m/s) | |
$28$(m/s) | |
$13$(m/s) |