Ngân hàng bài tập

Bài tập tương tự

A

Cho hàm số $f\left(x\right)=\sqrt{2x-1}$. Tính $f'''\left(1\right)$.

$3$
$-3$
$\dfrac{3}{2}$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hàm số $f\left(x\right)=\dfrac{1}{2x-1}$. Tính $f''\left(-1\right)$.

$-\dfrac{8}{27}$
$\dfrac{2}{9}$
$\dfrac{8}{27}$
$-\dfrac{4}{27}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho $f\left(x\right)=\sqrt{1+3x}-\sqrt[3]{1+2x}$, $g\left(x\right)=\sin x$. Tính giá trị của $\dfrac{f'\left(0\right)}{g'\left(0\right)}$.

$\dfrac{5}{6}$
$-\dfrac{5}{6}$
$0$
$1$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính $f'\left(\dfrac{\pi}{2}\right)$ biết $f\left(x\right)=\dfrac{\cos x}{1+\sin x}$.

$-2$
$\dfrac{1}{2}$
$0$
$-\dfrac{1}{2}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Nếu $f\left(x\right)=\dfrac{x^2-2x+5}{x-1}$ thì $f'\left(2\right)$ bằng

$-3$
$-5$
$0$
$1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm đạo hàm của hàm số \(y=\dfrac{1}{\sqrt{x+1}-\sqrt{x-1}}\).

\(y'=-\dfrac{1}{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}\)
\(y'=\dfrac{1}{2\left(\sqrt{x+1}+\sqrt{x-1}\right)}\)
\(y'=\dfrac{1}{4\sqrt{x+1}}+\dfrac{1}{4\sqrt{x-1}}\)
\(y'=\dfrac{1}{2\sqrt{x+1}}+\dfrac{1}{2\sqrt{x-1}}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tìm đạo hàm của hàm số \(y=\dfrac{1}{\sqrt{x^2+1}}\).

\(y'=\dfrac{x}{\left(x^2+1\right)\sqrt{x^2+1}}\)
\(y'=\dfrac{-x}{\left(x^2+1\right)\sqrt{x^2+1}}\)
\(y'=\dfrac{x}{2\left(x^2+1\right)\sqrt{x^2+1}}\)
\(y'=-\dfrac{x\left(x^2+1\right)}{\sqrt{x^2+1}}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tính đạo hàm của hàm số \(f(x)=\sqrt{x-1}\) tại điểm \(x=1\).

\(f'(1)=\dfrac{1}{2}\)
\(f'(1)=1\)
\(f'(1)=0\)
Không tồn tại
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính đạo hàm của hàm số \(f(x)=\dfrac{x^2+x}{x-2}\) tại điểm \(x=1\).

\(f'(x)=-4\)
\(f'(1)=-3\)
\(f'(1)=-2\)
\(f'(1)=-5\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hàm số \(f\left(x\right)\) có \(f\left(3\right)=3\) và \(f'\left(x\right)=\dfrac{x}{x+1-\sqrt{x+1}}\), \(\forall x>0\). Khi đó \(\displaystyle\int\limits_3^8f\left(x\right)\mathrm{\,d}x\) bằng

\(7\)
\(\dfrac{197}{6}\)
\(\dfrac{29}{2}\)
\(\dfrac{181}{6}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hàm số $f(x)=\ln\big(x^2+1\big)$. Giá trị $f'(2)$ bằng

$\dfrac{4}{5}$
$\dfrac{4}{3\ln2}$
$\dfrac{4}{2\ln5}$
$2$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Đồ thị hàm số nào sau đây có đúng $1$ đường tiệm cận ngang?

$y=\dfrac{\sqrt{2-x^2}}{x+3}$
$y=\dfrac{4x-3}{x^2-2x}$
$y=\dfrac{\sqrt{x^2+1}}{5x-3}$
$y=\dfrac{x^2-x}{x+1}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là

$y'=\dfrac{1-\ln2x}{x^2}$
$y'=\dfrac{\ln2x}{2x}$
$y'=\dfrac{\ln2x}{x^2}$
$y'=\dfrac{1}{2x}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Tính đạo hàm của hàm số $y=2x^3+x\ln x$ tại điểm $x=1$.

$6$
$2$
$3$
$7$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đồ thị hàm số nào sau đây có tiệm cận ngang?

$y=\dfrac{1-x^2}{x}$
$y=\dfrac{\sqrt{x^2-1}}{x}$
$y=\dfrac{x^2-1}{x}$
$y=\dfrac{\sqrt{1-x^2}}{x}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Đạo hàm của hàm số $y=\dfrac{\ln2x}{x}$ là

$y'=\dfrac{1-\ln2x}{x^2}$
$y'=\dfrac{\ln2x}{2x}$
$y'=\dfrac{\ln2x}{x^2}$
$y'=\dfrac{1}{2x}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Tập xác định của hàm số $y=\dfrac{2}{\sqrt{2-\sin x}}$ là

$(2;+\infty)$
$\mathbb{R}\setminus\{2\}$
$\mathbb{R}$
$[2;+\infty)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là

$\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$
$\{k2\pi,\,k\in\mathbb{Z}\}$
$\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.

$m=1$
$m=4$
$m=13$
$m=8$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hàm số $f\left(x\right)$ thỏa mãn $f\left(2\right)=25$ và $f'\left(x\right)=4x\sqrt{f\left(x\right)}$ với mọi $x\in\mathbb{R}$. Khi đó $\displaystyle\displaystyle\int\limits_2^3f\left(x\right)\mathrm{\,d}x$ bằng

$\dfrac{1073}{15}$
$\dfrac{458}{15}$
$\dfrac{838}{15}$
$\dfrac{1016}{15}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự