Cho hàm số $y=\dfrac{-x+1}{2x-1}$ có đồ thị $(\mathscr{C})$ và đường thẳng $(d)\colon y=x+m$. Với mọi giá trị thực của $m$ đường thẳng $(d)$ luôn cắt đồ thị $(\mathscr{C})$ tại hai điểm phân biệt $A$ và $B$. Gọi $k_1,\,k_2$ lần lượt là hệ số góc của các tiếp tuyến với $(\mathscr{C})$ tại $A$ và $B$. Giá trị nhỏ nhất của $T=k_1^{2022}+k_2^{2022}$ bằng
![]() | $\dfrac{1}{2}$ |
![]() | $2$ |
![]() | $\dfrac{2}{3}$ |
![]() | $1$ |
Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=\dfrac{x-1}{x+2}$ tại điểm có tung độ bằng $2$.
![]() | $y=-\dfrac{1}{3}x+\dfrac{1}{3}$ |
![]() | $y=\dfrac{1}{3}x+\dfrac{11}{3}$ |
![]() | $y=\dfrac{1}{3}x-\dfrac{11}{3}$ |
![]() | $y=\dfrac{1}{3}x+\dfrac{1}{3}$ |
Gọi $(d)$ là tiếp tuyến của đồ thị hàm số $y=f(x)=-x^3+x$ tại điểm $M(1;0)$. Tìm hệ số góc của $(d)$.
![]() | $-2$ |
![]() | $2$ |
![]() | $1$ |
![]() | $0$ |
Tiếp tuyến của đồ thị hàm số $y=x^3-2x^2$ tại điểm $M\left(1;-1\right)$ có hệ số góc bằng
![]() | $-1$ |
![]() | $1$ |
![]() | $7$ |
![]() | $5$ |
Cho hàm số $y=f(x)$ có đồ thị $\left(\mathscr{C}\right)$ và đạo hàm $f'(2)=6$. Hệ số góc của tiếp tuyến của $\left(\mathscr{C}\right)$ tại điểm $M\left(2;f\left(2\right)\right)$ bằng
![]() | $6$ |
![]() | $3$ |
![]() | $2$ |
![]() | $12$ |
Viết phương trình tiếp tuyến của đồ thị \(y=\dfrac{x-1}{x+1}\), biết tiếp tuyến có hệ số góc là \(\dfrac{1}{2}\).
![]() | \(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) |
![]() | \(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) |
![]() | \(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) |
![]() | \(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) |
Phương trình tiếp tuyến với đồ thị hàm số \(y=\dfrac{2x-4}{x-4}\) tại điểm có tung độ bằng \(3\) là
![]() | \(x+4y-20=0\) |
![]() | \(x+4y-5=0\) |
![]() | \(4x+y-2=0\) |
![]() | \(4x+y-5=0\) |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{4}{x-1}\) tại điểm có hoành độ \(x_0=-1\) là
![]() | \(y=-x-3\) |
![]() | \(y=x-1\) |
![]() | \(y=-x+2\) |
![]() | \(y=-x-1\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=x^4+2x^2-1\) tại điểm có hoành độ bằng \(1\) là
![]() | \(y=-8x-6\) |
![]() | \(y=8x-6\) |
![]() | \(y=-8x+10\) |
![]() | \(y=8x+10\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x-1}{x+1}\) tại điểm \(M(0;-1)\) là
![]() | \(y=3x+1\) |
![]() | \(y=3x-1\) |
![]() | \(y=-3x-1\) |
![]() | \(y=-3x+1\) |
Hệ số góc tiếp tuyến của đồ thị hàm \(y=\dfrac{x^4}{4}+\dfrac{x^2}{2}-1\) tại điểm có hoành độ \(x_0=-1\) bằng
![]() | \(-2\) |
![]() | \(-1\) |
![]() | \(2\) |
![]() | \(0\) |
Tìm hệ số góc \(k\) của tiếp tuyến của parabol \(y=x^2\) tại điểm có hoành độ \(\dfrac{1}{2}\).
![]() | \(k=0\) |
![]() | \(k=1\) |
![]() | \(k=\dfrac{1}{4}\) |
![]() | \(k=-\dfrac{1}{2}\) |
Viết phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=-x^3+x$ tại điểm $M(-2;6)$.
![]() | $y=-11x-16$ |
![]() | $y=-11x-28$ |
![]() | $y=-11x+28$ |
![]() | $y=-11x+16$ |
Cho hàm số $y=\dfrac{2x+1}{x-1}$ có đồ thị là $(\mathscr{C})$. Viết phương trình tiếp tuyến của $(\mathscr{C})$ biết tiếp tuyến vuông góc với đường thẳng có phương trình $x-3y+2019=0$.
Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=-3x^2+x+3$ $(\mathscr{P})$ tại điểm $M(1;1)$.
![]() | $y=-5x+6$ |
![]() | $y=5x-6$ |
![]() | $y=-5x-6$ |
![]() | $y=5x+6$ |
Cho hai hàm số $f(x)=x^2+2$, $g(x)=\dfrac{1}{1-x}$. Tính $\dfrac{f’(1)}{g’(0)}$.
![]() | $0$ |
![]() | $-2$ |
![]() | $2$ |
![]() | $1$ |
Đạo hàm của hàm số $y=\dfrac{x+1}{x-1}$ tại điểm $x_0=2$ bằng
![]() | $-2$ |
![]() | $1$ |
![]() | $0$ |
![]() | $2$ |
Gọi $M(a;b)$ là điểm thuộc đồ thị hàm số $y=f(x)=x^3-3x^2+2$ $(\mathscr{C})$ sao cho tiếp tuyến của $(\mathscr{C})$ tại điểm $M$ có hệ số góc nhỏ nhất. Tính $a+b$.
![]() | $-3$ |
![]() | $0$ |
![]() | $1$ |
![]() | $2$ |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{x-2}{2x+1}\) vuông góc với đường thẳng \(y=-\dfrac{1}{5}x\) là
![]() | \(y=5x+3\) và \(y=5x-2\) |
![]() | \(y=5x-8\) và \(y=5x-2\) |
![]() | \(y=5x+8\) và \(y=5x-2\) |
![]() | \(y=5x+8\) và \(y=5x+2\) |
Tìm tất cả các phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x+1}{x-1}\) song song với đường thẳng \(y=-3x+15\).
![]() | \(y=-3x+1\), \(y=-3x-7\) |
![]() | \(y=-3x-1\), \(y=-3x+11\) |
![]() | \(y=-3x-1\) |
![]() | \(y=-3x+11\), \(y=-3x+5\) |