Tiếp tuyến của đồ thị hàm số \(y=x^3-3x+2\) vuông góc với \(d\colon y=-\dfrac 19x+2\) là
![]() | \(y=-\dfrac 19x+18,\,y=-\dfrac 19x+5\) |
![]() | \(y=\dfrac 19x+18,\,y=\dfrac 19x-14\) |
![]() | \(y=9x+18,\,y=9x-14\) |
![]() | \(y=9x+18,\,y=9x+5\) |
Tìm phương trình tiếp tuyến của đồ thị hàm số $y=f(x)=\dfrac{x-1}{x+2}$ tại điểm có tung độ bằng $2$.
![]() | $y=-\dfrac{1}{3}x+\dfrac{1}{3}$ |
![]() | $y=\dfrac{1}{3}x+\dfrac{11}{3}$ |
![]() | $y=\dfrac{1}{3}x-\dfrac{11}{3}$ |
![]() | $y=\dfrac{1}{3}x+\dfrac{1}{3}$ |
Cho hàm số $y=\dfrac{2x+1}{x-1}$ có đồ thị là $(\mathscr{C})$. Viết phương trình tiếp tuyến của $(\mathscr{C})$ biết tiếp tuyến vuông góc với đường thẳng có phương trình $x-3y+2019=0$.
Tìm tất cả các phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x+1}{x-1}\) song song với đường thẳng \(y=-3x+15\).
![]() | \(y=-3x+1\), \(y=-3x-7\) |
![]() | \(y=-3x-1\), \(y=-3x+11\) |
![]() | \(y=-3x-1\) |
![]() | \(y=-3x+11\), \(y=-3x+5\) |
Viết phương trình tiếp tuyến của đồ thị \(y=\dfrac{x-1}{x+1}\), biết tiếp tuyến có hệ số góc là \(\dfrac{1}{2}\).
![]() | \(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) |
![]() | \(y=\dfrac{1}{2}x-\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) |
![]() | \(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x+\dfrac{7}{2}\) |
![]() | \(y=\dfrac{1}{2}x+\dfrac{1}{2}\) và \(y=\dfrac{1}{2}x-\dfrac{7}{2}\) |
Phương trình tiếp tuyến với đồ thị hàm số \(y=\dfrac{2x-4}{x-4}\) tại điểm có tung độ bằng \(3\) là
![]() | \(x+4y-20=0\) |
![]() | \(x+4y-5=0\) |
![]() | \(4x+y-2=0\) |
![]() | \(4x+y-5=0\) |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{4}{x-1}\) tại điểm có hoành độ \(x_0=-1\) là
![]() | \(y=-x-3\) |
![]() | \(y=x-1\) |
![]() | \(y=-x+2\) |
![]() | \(y=-x-1\) |
Phương trình tiếp tuyến của đồ thị hàm số \(y=\dfrac{2x-1}{x+1}\) tại điểm \(M(0;-1)\) là
![]() | \(y=3x+1\) |
![]() | \(y=3x-1\) |
![]() | \(y=-3x-1\) |
![]() | \(y=-3x+1\) |
Tiếp tuyến của đồ thị hàm số \(y=\dfrac{x+1}{x-5}\) tại điểm \(A(-1;0)\) có hệ số góc bằng
![]() | \(\dfrac{1}{6}\) |
![]() | \(-\dfrac{1}{6}\) |
![]() | \(\dfrac{6}{25}\) |
![]() | \(-\dfrac{6}{25}\) |
Tiếp tuyến của đường cong \(\left(\mathscr{C}\right)\colon y=\dfrac{2x+1}{x-1}\) tại điểm \(M(2;5)\) cắt các trục tọa độ \(Ox\), \(Oy\) lần lượt tại \(A\) và \(B\). Tính diện tích tam giác \(OAB\).
![]() | \(\dfrac{121}{6}\) |
![]() | \(\dfrac{121}{3}\) |
![]() | \(-\dfrac{121}{6}\) |
![]() | \(-\dfrac{121}{3}\) |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
![]() | $12$ |
![]() | $11$ |
![]() | $6$ |
![]() | $5$ |
Cho hàm số $y=\dfrac{-x+1}{2x-1}$ có đồ thị $(\mathscr{C})$ và đường thẳng $(d)\colon y=x+m$. Với mọi giá trị thực của $m$ đường thẳng $(d)$ luôn cắt đồ thị $(\mathscr{C})$ tại hai điểm phân biệt $A$ và $B$. Gọi $k_1,\,k_2$ lần lượt là hệ số góc của các tiếp tuyến với $(\mathscr{C})$ tại $A$ và $B$. Giá trị nhỏ nhất của $T=k_1^{2022}+k_2^{2022}$ bằng
![]() | $\dfrac{1}{2}$ |
![]() | $2$ |
![]() | $\dfrac{2}{3}$ |
![]() | $1$ |
Tìm giá trị nhỏ nhất của tham số $m$ để bất phương trình $$\dfrac{x^3+\sqrt{3x^2+1}+1}{\sqrt{x}-\sqrt{x-1}}\leq\dfrac{m}{\left(\sqrt{x}+\sqrt{x-1}\right)^2}$$có nghiệm.
![]() | $m=1$ |
![]() | $m=4$ |
![]() | $m=13$ |
![]() | $m=8$ |
Tìm $m$ sao cho bất phương trình $\dfrac{x^2-2x+2}{x-1}\leq m$ có đúng một nghiệm trên khoảng $(1;+\infty)$.
![]() | $m\geq2$ |
![]() | $m\leq2$ |
![]() | $m=2$ |
![]() | $m>2$ |
Cho hàm số $f(x)=\dfrac{x+m}{x+1}$ với $m$ là tham số thực. Tìm giá trị của $m$ thỏa mãn $\min\limits_{[1;2]}f(x)+\min\limits_{[1;2]}f(x)=\dfrac{16}{3}$.
![]() | $m=5$ |
![]() | $m=\dfrac{5}{6}$ |
![]() | $m=-5$ |
![]() | $m=\dfrac{5}{3}$ |
Cho hàm số $f(x)=\dfrac{x+m}{x-1}$ với $m$ là tham số thực. Gọi $m$ là giá trị thỏa mãn $\min\limits_{[2;4]}=3$, mệnh đề nào sau đây là đúng?
![]() | $3< m\leq4$ |
![]() | $1\leq m<3$ |
![]() | $m>4$ |
![]() | $m<-1$ |
Cho hàm số $f(x)=\dfrac{x-m^2}{x+8}$ với $m$ là tham số thực. Tìm giá trị lớn nhất của $m$ để hàm số có giá trị nhỏ nhất trên đoạn $[0;3]$ bằng $-2$.
![]() | $m=-4$ |
![]() | $m=5$ |
![]() | $m=1$ |
![]() | $m=4$ |
Tìm tất cả các giá trị thực của tham số $m$ sao cho hàm số $y=\dfrac{mx^3}{3}+7mx^2+14x-m+2$ nghịch biến trên $[1;+\infty)$.
![]() | $\left(-\infty;-\dfrac{14}{15}\right)$ |
![]() | $\left(-\infty;-\dfrac{14}{15}\right]$ |
![]() | $\left[-2;-\dfrac{14}{15}\right]$ |
![]() | $\left[-\dfrac{14}{15};+\infty\right)$ |
Tìm tập hợp giá trị của tham số $m$ để hàm số $y=x^3-mx^2-(m-6)x+1$ đồng biến trên khoảng $(0;4)$.
![]() | $(-\infty;6]$ |
![]() | $(-\infty;3]$ |
![]() | $(-\infty;3)$ |
![]() | $[3;6]$ |
Biết hàm số $y=\dfrac{x+a}{x+1}$ ($a$ là số thực cho trước, $a\ne1$) có đồ thị như trong hình bên.
Mệnh đề nào dưới đây đúng?
![]() | $y'< 0,\,\forall x\ne-1$ |
![]() | $y'>0,\,\forall x\ne-1$ |
![]() | $y'< 0,\,\forall x\in\mathbb{R}$ |
![]() | $y'>0,\,\forall x\in\mathbb{R}$ |