Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $O$. Lấy điểm $M$ trên cạnh $SA$, trung điểm $CD$ là $N$. Tìm giao tuyến của các cặp mặt phẳng sau:
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $N,\,P$ lần lượt là trung điểm của các cạnh $BC,\,AD$; $K$ là giao $BP$ và $AN$. Khi đó $SK$ là giao tuyến của mặt phẳng $(SAN)$ và mặt phẳng nào sau đây?
$(SPC)$ | |
$(SCD)$ | |
$(SBC)$ | |
$(SBP)$ |
Trong mặt phẳng $(\alpha)$, cho hình bình hành $ABCD$ tâm $O$, $S$ là một điểm không thuộc $(\alpha)$. Gọi $M,\,N,\,P$ lần lượt là trung điểm của $BC$, $CD$ và $SO$. Đường thẳng $MN$ cắt $AB$, $AC$ và $AD$ tại $M_1$, $N_1$ và $O_1$. Nối $N_1P$ cắt $SA$ tại $P_1$, nối $M_1P_1$ cắt $SB$ tại $M_2$, nối $O_1P_1$ cắt $SD$ tại $N_2$. Khi đó giao tuyến của $(MNP)$ với $(SAB)$ là
$P_1N_2$ | |
$P_1M_2$ | |
$P_1C$ | |
$M_1N_1$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $d$ là giao tuyến của hai mặt phẳng $(SAD)$ và $(SBC)$. Khẳng định nào sau đây đúng?
$d$ qua $S$ và song song với $BC$ | |
$d$ qua $S$ và song song với $DC$ | |
$d$ qua $S$ và song song với $AB$ | |
$d$ qua $S$ và song song với $BD$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $I$ là trung điểm $SA$. Thiết diện của hình chóp $S.ABCD$ cắt bởi $(IBC)$ là
Tam giác $IBC$ | |
Hình thang $IGBC$ ($G$ là trung điểm $SB$) | |
Hình thang $IJCB$ ($J$ là trung điểm $SD$) | |
Tứ giác $IBCD$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M,\,N$ lần lượt là trung điểm $AD$ và $BC$. Giao tuyến của hai mặt phẳng $(SMN)$ và $(SAC)$ là
$SD$ | |
$SO$ ($O$ là tâm của hình bình hành $ABCD$) | |
$SG$ ($G$ là trung điểm cạnh $AB$) | |
$SF$ ($F$ là trung điểm cạnh $CD$) |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.
$V=\dfrac{1}{12}$ | |
$V=\dfrac{1}{3}$ | |
$V=\dfrac{1}{6}$ | |
$V=\dfrac{2}{3}$ |
Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA,\,SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?
$\dfrac{V'}{V}=\dfrac{1}{6}$ | |
$\dfrac{V'}{V}=\dfrac{2}{5}$ | |
$\dfrac{V'}{V}=\dfrac{1}{3}$ | |
$\dfrac{V'}{V}=\dfrac{1}{4}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$ là đường thẳng
Đi qua điểm $S$ và song song với $AD$ | |
Đi qua điểm $S$ và song song với $AB$ | |
Không tồn tại | |
Đi qua giao điểm $I$ của $AB$ và $CD$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang, đáy lớn $AB$. Phát biểu nào không đúng về giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$?
Song song với $CD$ | |
Đi qua điểm $S$ | |
Song song với $AB$ | |
Đi qua giao điểm $I$ của $AB$ và $CD$ |
Cho tứ diện $ABCD$. Gọi $M$ và $N$ lần lượt là trung điểm của $AC$ và $BC$. $P$ là điểm di động trên đoạn $BD$. Mặt phẳng $(MNP)$ cắt $AD$ tại $Q$.
Trong mặt phẳng $(\alpha)$, cho hình bình hành $ABCD$ tâm $O$, $S$ là một điểm không thuộc $(\alpha)$. Gọi $M,\,N,\,P$ lần lượt là trung điểm của $BC$, $CD$ và $SO$. Đường thẳng $MN$ cắt $AB$, $AC$ và $AD$ tại $M_1$, $N_1$ và $O_1$. Nối $N_1P$ cắt $SA$ tại $P_1$, nối $M_1P_1$ cắt $SB$ tại $M_2$, nối $O_1P_1$ cắt $SD$ tại $N_2$. Khi đó thiết diện của mặt phẳng $(MNP)$ với hình chóp $S.ABCD$ là
Tam giác $MNP$ | |
Tứ giác $BM_2N_2N$ | |
Ngũ giác $NMM_2P_1N_2$ | |
Tam giác $P_1M_1N_1$ |
Cho hình chóp tứ giác $S.ABCD$. Gọi $M$ và $N$ lần lượt là trung điểm của $SA$ và $SC$. Khẳng định nào sau đây đúng?
$MN\parallel(ABCD)$ | |
$MN\parallel(SAB)$ | |
$MN\parallel(SCD)$ | |
$MN\parallel(SBC)$ |
Cho hình chóp $S.ABCD$ với đáy là hình bình hành tâm $O$. Gọi $G$ là trọng tâm của tam giác $SAB$. Hãy tìm
Cho tứ diện $SABC$. Gọi $D$, $E$, $F$ lần lượt là trung điểm của $AB$, $BC$, $SA$.
Cho hình chóp $S.ABCD$ có đáy là tứ giác lồi. Hai điểm $G$, $H$ lần lượt là trọng tâm của $\triangle SAB$ và $\triangle SCD$. Tìm giao tuyến của các cặp mặt phẳng sau:
Cho hình chóp $S.ABCD$, trong đó mặt đáy $ABCD$ có các cặp cạnh đối không song song. Gọi điểm $M$ thuộc cạnh $SA$. Tìm giao tuyến của các cặp mặt phẳng sau.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là tứ giác lồi. Tìm giao tuyến của các cặp mặt phẳng sau đây
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.
$V=\dfrac{7\sqrt{6}a^3}{72}$ | |
$V=\dfrac{7\sqrt{6}a^3}{36}$ | |
$V=\dfrac{5\sqrt{6}a^3}{36}$ | |
$V=\dfrac{5\sqrt{6}a^3}{72}$ |
Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA$, $SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?
$\dfrac{V'}{V}=\dfrac{1}{6}$ | |
$\dfrac{V'}{V}=\dfrac{2}{5}$ | |
$\dfrac{V'}{V}=\dfrac{1}{3}$ | |
$\dfrac{V'}{V}=\dfrac{1}{4}$ |