Xét tính chẵn lẻ của hai hàm số $f(x)=|x+2|-|x-2|$ và $g(x)=-|x|$.
$f(x)$ chẵn, $g(x)$ chẵn | |
$f(x)$ lẻ, $g(x)$ chẵn | |
$f(x)$ lẻ, $g(x)$ lẻ | |
$f(x)$ chẵn, $g(x)$ lẻ |
Cho hàm số $f(x)=|x+1|+|x-1|$. Mệnh đề nào sai?
Hàm số $f(x)$ có tập xác định là $\mathbb{R}$ | |
Đồ thị hàm số $f(x)$ nhận trục $Oy$ là trục đối xứng | |
Hàm số $f(x)$ là hàm số chẵn | |
Đồ thị hàm số $f(x)$ nhận gốc tọa độ là tâm đối xứng |
Đồ thị hàm số nào sau đây nhận trục $Oy$ làm trục đối xứng?
$y=x^3-|x|$ | |
$y=x^2-|x|$ | |
$y=x^2-x$ | |
$y=x^3-x$ |
Hàm số nào sau đây có đồ thị đối xứng qua trục tung?
$y=\left|x+1\right|+\left|x-1\right|$ | |
$y=\left|x+3\right|+\left|x-2\right|$ | |
$y=2x^3-3x$ | |
$y=2x^4-3x^2+x$ |
Cho hai hàm số \(f(x)=\dfrac{\cos2x}{1+\sin^23x}\) và \(g(x)=\dfrac{\left|\sin2x\right|-\cos3x}{2+\tan^2x}\). Chọn mệnh đề đúng trong các mệnh đề sau:
\(f(x)\) là hàm số chẵn, \(g(x)\) là hàm số lẻ | |
\(f(x)\) là hàm số lẻ, \(g(x)\) là hàm số chẵn | |
\(f(x)\) và \(g(x)\) đều là hàm số chẵn | |
\(f(x)\) và \(g(x)\) đều là hàm số lẻ |
Mệnh đề nào sau đây là sai?
Đồ thị hàm số \(y=\left|\sin x\right|\) đối xứng qua gốc tọa độ \(O\) | |
Đồ thị hàm số \(y=\cos x\) đối xứng qua trục \(Oy\) | |
Đồ thị hàm số \(y=\left|\tan x\right|\) đối xứng qua trục \(Oy\) | |
Đồ thị hàm số \(y=\tan x\) đối xứng qua gốc tọa độ \(O\) |
Hàm số nào sau đây có đồ thị đối xứng qua gốc tọa độ?
\(y=\cot4x\) | |
\(y=\dfrac{\sin x+1}{\cos x}\) | |
\(y=\tan^2x\) | |
\(y=\left|\cot x\right|\) |
Hàm số nào sau đây là hàm số chẵn?
\(y=\left|\sin x\right|\) | |
\(y=x^2\sin x\) | |
\(y=\dfrac{x}{\cos x}\) | |
\(y=x+\sin x\) |
Có bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\big|3x^4-4x^3-12x^2+m\big|$ có $7$ điểm cực trị?
$4$ | |
$6$ | |
$3$ | |
$5$ |
Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
$21$ | |
$10$ | |
$8$ | |
$2$ |
Có bao nhiêu giá trị nguyên của tham số $a\in(-10;+\infty)$ để hàm số $y=\big|x^3+(a+2)x+9-a^2\big|$ đồng biến trên khoảng $(0;1)$?
$12$ | |
$11$ | |
$6$ | |
$5$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.
Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
$3$ | |
$4$ | |
$1$ | |
$2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong như hình vẽ bên.
Hỏi phương trình $\big|f(x)-1\big|=1$ có bao nhiêu nghiệm?
$6$ | |
$3$ | |
$4$ | |
$5$ |
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\big|x^4-2mx^2+64x\big|$ có đúng ba điểm cực trị?
$5$ | |
$6$ | |
$12$ | |
$11$ |
Cho hàm số $f(x)=\left|x^4-4x^3+4x^2+a\right|$. Gọi $M,\,m$ lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn $[0;2]$. Có bao nhiêu số nguyên $a$ thuộc đoạn $[-3;2]$ sao cho $M\leq2m$?
$7$ | |
$5$ | |
$6$ | |
$4$ |
Trong các hàm số sau, hàm số nào là hàm số chẵn?
$y=\sin2x$ | |
$y=x\cos x$ | |
$y=\cos x\cdot\cot x$ | |
$y=\cot x\cdot\sin x$ |
Trong các hàm số sau, hàm số nào là hàm số chẵn?
$y=\sin x$ | |
$y=\cos x$ | |
$y=\tan x$ | |
$y=\cot x$ |
Hàm số nào sau đây là hàm số lẻ?
$y=\cos^3x$ | |
$y=\sin x+\cos^3x$ | |
$y=\sin x+\tan^3x$ | |
$\tan^2x$ |
Trong các hàm số sau đây, hàm số nào là hàm số chẵn?
$y=\cos2x$ | |
$y=\cot2x$ | |
$y=\tan2x$ | |
$y=\sin2x$ |