Cho hình chóp $S.ABC$ có góc tạo bởi các mặt bên và mặt đáy bằng nhau. Gọi $H$ là hình chiếu vuông góc của $S$ trên mặt đáy. Phát biểu nào sau đây đúng nhất?
$S.ABC$ là hình chóp đều | |
$H$ là trực tâm của $\triangle ABC$ | |
$H$ là tâm đường tròn ngoại tiếp $\triangle ABC$ | |
$H$ là tâm đường tròn nội tiếp $\triangle ABC$ |
Cho hình chóp $S.ABC$ có góc tạo bởi các cạnh bên và mặt đáy bằng nhau. Gọi $H$ là hình chiếu vuông góc của $S$ trên mặt đáy. Phát biểu nào sau đây đúng nhất?
$S.ABC$ là hình chóp đều | |
$H$ là trực tâm của $\triangle ABC$ | |
$H$ là tâm đường tròn ngoại tiếp $\triangle ABC$ | |
$H$ là tâm đường tròn nội tiếp $\triangle ABC$ |
Cho hình chóp $S.ABC$ có đáy là tam giác đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng
$\dfrac{a^3\sqrt{3}}{12}$ | |
$\dfrac{a^3}{12}$ | |
$\dfrac{a^3}{9}$ | |
$\dfrac{a^3\sqrt{2}}{9}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ trên đáy là điểm $H$ trên cạnh $AC$ sao cho $AH=\dfrac{2}{3}AC$; mặt phẳng $(SBC)$ tạo với đáy một góc $60^{\circ}$. Thể tích khối chóp $S.ABC$ là
$\dfrac{a^3\sqrt{3}}{12}$ | |
$\dfrac{a^3\sqrt{3}}{48}$ | |
$\dfrac{a^3\sqrt{3}}{36}$ | |
$\dfrac{a^3\sqrt{3}}{24}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SC$ trên mặt phẳng $(ABC)$ là đường thẳng
$AC$ | |
$BC$ | |
$AB$ | |
$SC$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SB$ trên mặt phẳng $(ABC)$ là đường thẳng
$AB$ | |
$BC$ | |
$SB$ | |
$AC$ |
Cho tứ diện $OABC$ có $OA$, $OB$, $OC$ đôi một vuông góc. Gọi $OH$ là đường cao của tứ diện. Khi đó $H$ là
Trọng tâm $\triangle ABC$ | |
Trực tâm $\triangle ABC$ | |
Tâm đường tròn nội tiếp $\triangle ABC$ | |
Tâm đường tròn ngoại tiếp $\triangle ABC$ |
Cho hình chóp $S.ABC$ có $SA=SB=SC$ và đáy là tam giác $ABC$ vuông cân tại $A$. Trong các mệnh đề dưới đây, có bao nhiêu mệnh đề đúng?
$0$ | |
$1$ | |
$2$ | |
$3$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là
$\dfrac{3a^3}{16}$ | |
$\dfrac{a^3}{16}$ | |
$\dfrac{a^3\sqrt{3}}{16}$ | |
$\dfrac{3\sqrt{3}a^3}{16}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.
$V=\dfrac{1}{12}$ | |
$V=\dfrac{1}{3}$ | |
$V=\dfrac{1}{6}$ | |
$V=\dfrac{2}{3}$ |
Cho khối tứ diện $ABCD$. Hai điểm $M,\,N$ lần lượt là trung điểm của $BC$ và $BD$. Mặt phẳng $(AMN)$ chia khối tứ diện $ABCD$ thành
Một khối tứ diện và một khối chóp tứ giác | |
Hai khối chóp tứ giác | |
Hai khối tứ diện | |
Hai khối tứ diện và một khối chóp tứ giác |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng
$\dfrac{\sqrt{3}}{4}a^3$ | |
$\dfrac{\sqrt{3}}{2}a^3$ | |
$\dfrac{3\sqrt{3}}{4}a^3$ | |
$\dfrac{3\sqrt{3}}{2}a^3$ |
Nếu khối lăng trụ $ABC.A'B'C'$ có thể tích $V$ thì khối chóp $A'.ABC$ có thể tích bằng
$\dfrac{V}{3}$ | |
$V$ | |
$\dfrac{2V}{3}$ | |
$3V$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
$45^\circ$ | |
$90^\circ$ | |
$30^\circ$ | |
$60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
$60^\circ$ | |
$90^\circ$ | |
$30^\circ$ | |
$45^\circ$ |
Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?
$AB\perp BC$ | |
$SA\perp AC$ | |
$SA\perp(ABC)$ | |
$\big(SA,(ABC)\big)=90^\circ$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc
$\widehat{SCA}$ | |
$\widehat{SCB}$ | |
$\widehat{SAC}$ | |
$\widehat{ASC}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ là góc
$\widehat{SBA}$ | |
$\widehat{SBC}$ | |
$\widehat{SAB}$ | |
$\widehat{ASB}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SA$ và mặt phẳng $(ABC)$ có số đo là
$90^\circ$ | |
$0^\circ$ | |
$180^\circ$ | |
$90$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Khẳng định nào sau đây không đúng?
$SB\perp BC$ | |
$SA\perp AB$ | |
$SA\perp AC$ | |
$SA\perp BC$ |