Có thể chia khối chóp $S.ABCD$ thành hai khối tứ diện là
![]() | $SBCD$ và $SACD$ |
![]() | $SACD$ và $SABD$ |
![]() | $SABC$ và $SABD$ |
![]() | $SABC$ và $SACD$ |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.
![]() | $V=\dfrac{7\sqrt{6}a^3}{72}$ |
![]() | $V=\dfrac{7\sqrt{6}a^3}{36}$ |
![]() | $V=\dfrac{5\sqrt{6}a^3}{36}$ |
![]() | $V=\dfrac{5\sqrt{6}a^3}{72}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.
![]() | $V=\dfrac{1}{12}$ |
![]() | $V=\dfrac{1}{3}$ |
![]() | $V=\dfrac{1}{6}$ |
![]() | $V=\dfrac{2}{3}$ |
Cho khối tứ diện $ABCD$. Hai điểm $M,\,N$ lần lượt là trung điểm của $BC$ và $BD$. Mặt phẳng $(AMN)$ chia khối tứ diện $ABCD$ thành
![]() | Một khối tứ diện và một khối chóp tứ giác |
![]() | Hai khối chóp tứ giác |
![]() | Hai khối tứ diện |
![]() | Hai khối tứ diện và một khối chóp tứ giác |
Cho hình chóp $S.ABCD$ có chiều cao bằng $8$ và đáy $ABCD$ là hình vuông cạnh bằng $3$. Gọi $M$ là trung điểm của $SB$ và $N$ là điểm thuộc $SD$ sao cho $\overrightarrow{SN}=2\overrightarrow{ND}$. Thể tích khối tứ diện $ACMN$ bằng
![]() | $6$ |
![]() | $9$ |
![]() | $4$ |
![]() | $3$ |
Cho khối chóp $S.ABCD$ có đáy là hình bình hành và có thể tích $48$. Trên các cạnh $SA,\,SB,\,SC,\,SD$ lần lượt lấy các điểm $A',\,B',\,C'$ và $D'$ sao cho $\dfrac{SA'}{SA}=\dfrac{SC'}{SC}=\dfrac{1}{3}$ và $\dfrac{SB'}{SB}=\dfrac{SD'}{SD}=\dfrac{3}{4}$. Tính thể tích $V$ của khối đa diện lõm $S.A'B'C'D'$.
![]() | $V=4$ |
![]() | $V=9$ |
![]() | $V=\dfrac{3}{2}$ |
![]() | $V=6$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là
![]() | $\dfrac{3a^3}{16}$ |
![]() | $\dfrac{a^3}{16}$ |
![]() | $\dfrac{a^3\sqrt{3}}{16}$ |
![]() | $\dfrac{3\sqrt{3}a^3}{16}$ |
Cho hình chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$ và chiều cao bằng $2a$, diện tích xung quanh của hình nón đỉnh $S$ và đáy là hình tròn nội tiếp $ABCD$ bằng
![]() | $\dfrac{\pi a^2\sqrt{17}}{8}$ |
![]() | $\dfrac{\pi a^2\sqrt{15}}{4}$ |
![]() | $\dfrac{\pi a^2\sqrt{17}}{4}$ |
![]() | $\dfrac{\pi a^2\sqrt{17}}{6}$ |
Cho hình chóp $S.ABCD$ có đáy là hình vuông cạnh $a$, $SA\perp(ABCD)$ và $SA=2a$. Thể tích của khối tứ diện $SBCD$ là
![]() | $\dfrac{a^3}{3}$ |
![]() | $\dfrac{a^3}{4}$ |
![]() | $\dfrac{a^3}{6}$ |
![]() | $\dfrac{a^3}{8}$ |
Cho khối chóp tứ giác đều có chiều cao bằng $6$ và thể tích bằng $8$. Độ dài cạnh đáy bằng
![]() | $3$ |
![]() | $\dfrac{2}{\sqrt{3}}$ |
![]() | $4$ |
![]() | $2$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AB=3$, $AD=4$. Biết đường thẳng $SA$ vuông góc với mặt phẳng đáy và góc tạo bởi đường thẳng $SC$ và mặt phẳng đáy bằng $45^\circ$. Tính bán kính mặt cầu ngoại tiếp hình chóp $S.ABCD$.
![]() | $\dfrac{5\sqrt{2}}{2}$ |
![]() | $\dfrac{5}{2}$ |
![]() | $\dfrac{2\sqrt{5}}{3}$ |
![]() | $\dfrac{5}{3}$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.
![]() | $\dfrac{a\sqrt{3}}{4}$ |
![]() | $\dfrac{a\sqrt{3}}{2}$ |
![]() | $a\sqrt{3}$ |
![]() | $\dfrac{a\sqrt{3}}{3}$ |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.
![]() | $\dfrac{a^3\sqrt{7}}{18}$ |
![]() | $\dfrac{a^3\sqrt{7}}{6}$ |
![]() | $\dfrac{a^3\sqrt{7}}{3}$ |
![]() | $\dfrac{a^3\sqrt{7}}{12}$ |
Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA$, $SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?
![]() | $\dfrac{V'}{V}=\dfrac{1}{6}$ |
![]() | $\dfrac{V'}{V}=\dfrac{2}{5}$ |
![]() | $\dfrac{V'}{V}=\dfrac{1}{3}$ |
![]() | $\dfrac{V'}{V}=\dfrac{1}{4}$ |
Cho hình chóp $S.ABC$ có đáy là tam giác đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng
![]() | $\dfrac{a^3\sqrt{3}}{12}$ |
![]() | $\dfrac{a^3}{12}$ |
![]() | $\dfrac{a^3}{9}$ |
![]() | $\dfrac{a^3\sqrt{2}}{9}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng
![]() | $\dfrac{\sqrt{3}}{4}a^3$ |
![]() | $\dfrac{\sqrt{3}}{2}a^3$ |
![]() | $\dfrac{3\sqrt{3}}{4}a^3$ |
![]() | $\dfrac{3\sqrt{3}}{2}a^3$ |
Cho hình chóp tứ giác đều $S.ABCD$ có cạnh đáy là $2a$ và chiều cao là $3a$. Thể tích của khối nón có đỉnh $S$ và đáy là đường tròn nội tiếp tứ giác $ABCD$ bằng
![]() | $4\pi a^3$ |
![]() | $\pi a^3$ |
![]() | $3\pi a^3$ |
![]() | $2\pi a^3$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông cạnh $a$, $SA$ vuông góc với mặt phẳng đáy và $SA=9a$. Thể tích khối chóp $S.ABCD$ bằng
![]() | $a^3$ |
![]() | $27a^3$ |
![]() | $9a^3$ |
![]() | $3a^3$ |
Cho khối chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành, $SA=SB=SC=AC=a$, $SB$ tạo với mặt phẳng $(SAC)$ một góc $30^\circ$. Thể tích khối chóp đã cho bằng
![]() | $\dfrac{a^3}{4}$ |
![]() | $\dfrac{a^3}{8}$ |
![]() | $\dfrac{\sqrt{3}a^3}{12}$ |
![]() | $\dfrac{\sqrt{3}a^3}{24}$ |
Cho hình chóp đều $S.ABCD$ có đáy bằng a và chiều cao bằng $\dfrac{\sqrt{3}a}{6}$. Góc giữa mặt phẳng $(SCD)$ và mặt phẳng đáy bằng
![]() | $45^\circ$ |
![]() | $90^\circ$ |
![]() | $60^\circ$ |
![]() | $30^\circ$ |