Cho hình chóp $S.ABC$ có góc tạo bởi các mặt bên và mặt đáy bằng nhau. Gọi $H$ là hình chiếu vuông góc của $S$ trên mặt đáy. Phát biểu nào sau đây đúng nhất?
![]() | $S.ABC$ là hình chóp đều |
![]() | $H$ là trực tâm của $\triangle ABC$ |
![]() | $H$ là tâm đường tròn ngoại tiếp $\triangle ABC$ |
![]() | $H$ là tâm đường tròn nội tiếp $\triangle ABC$ |
Cho hình chóp $S.ABC$ có đáy là tam giác đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng
![]() | $\dfrac{a^3\sqrt{3}}{12}$ |
![]() | $\dfrac{a^3}{12}$ |
![]() | $\dfrac{a^3}{9}$ |
![]() | $\dfrac{a^3\sqrt{2}}{9}$ |
Cho tứ diện $OABC$ có $OA$, $OB$, $OC$ đôi một vuông góc. Gọi $OH$ là đường cao của tứ diện. Khi đó $H$ là
![]() | Trọng tâm $\triangle ABC$ |
![]() | Trực tâm $\triangle ABC$ |
![]() | Tâm đường tròn nội tiếp $\triangle ABC$ |
![]() | Tâm đường tròn ngoại tiếp $\triangle ABC$ |
Cho hình chóp $S.ABC$ có $SA=SB=SC$ và $H$ là hình chiếu vuông góc của $S$ trên mặt phẳng $\left(ABC\right)$. Phát biểu nào sau đây không đúng?
![]() | $H$ là tâm đường tròn ngoại tiếp tam giác $ABC$ |
![]() | $S.ABC$ là hình chóp đều |
![]() | $\widehat{SAH}=\widehat{SBH}=\widehat{SCH}$ |
![]() | $HA=HB=HC$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ trên đáy là điểm $H$ trên cạnh $AC$ sao cho $AH=\dfrac{2}{3}AC$; mặt phẳng $(SBC)$ tạo với đáy một góc $60^{\circ}$. Thể tích khối chóp $S.ABC$ là
![]() | $\dfrac{a^3\sqrt{3}}{12}$ |
![]() | $\dfrac{a^3\sqrt{3}}{48}$ |
![]() | $\dfrac{a^3\sqrt{3}}{36}$ |
![]() | $\dfrac{a^3\sqrt{3}}{24}$ |
Cho hình chóp $S.ABC$ có $SA=SB=SC$ và đáy là tam giác $ABC$ vuông cân tại $A$. Trong các mệnh đề dưới đây, có bao nhiêu mệnh đề đúng?
![]() | $0$ |
![]() | $1$ |
![]() | $2$ |
![]() | $3$ |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.
![]() | $V=\dfrac{7\sqrt{6}a^3}{72}$ |
![]() | $V=\dfrac{7\sqrt{6}a^3}{36}$ |
![]() | $V=\dfrac{5\sqrt{6}a^3}{36}$ |
![]() | $V=\dfrac{5\sqrt{6}a^3}{72}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng
![]() | $\dfrac{\sqrt{3}}{4}a^3$ |
![]() | $\dfrac{\sqrt{3}}{2}a^3$ |
![]() | $\dfrac{3\sqrt{3}}{4}a^3$ |
![]() | $\dfrac{3\sqrt{3}}{2}a^3$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
![]() | $45^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
![]() | $60^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $45^\circ$ |
Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?
![]() | $AB\perp BC$ |
![]() | $SA\perp AC$ |
![]() | $SA\perp(ABC)$ |
![]() | $\big(SA,(ABC)\big)=90^\circ$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc
![]() | $\widehat{SCA}$ |
![]() | $\widehat{SCB}$ |
![]() | $\widehat{SAC}$ |
![]() | $\widehat{ASC}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ là góc
![]() | $\widehat{SBA}$ |
![]() | $\widehat{SBC}$ |
![]() | $\widehat{SAB}$ |
![]() | $\widehat{ASB}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SC$ trên mặt phẳng $(ABC)$ là đường thẳng
![]() | $AC$ |
![]() | $BC$ |
![]() | $AB$ |
![]() | $SC$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SB$ trên mặt phẳng $(ABC)$ là đường thẳng
![]() | $AB$ |
![]() | $BC$ |
![]() | $SB$ |
![]() | $AC$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SA$ và mặt phẳng $(ABC)$ có số đo là
![]() | $90^\circ$ |
![]() | $0^\circ$ |
![]() | $180^\circ$ |
![]() | $90$ |
Cho hình chóp $S.ABC$ có đáy là tam giác $ABC$ đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng
![]() | $\dfrac{a^3\sqrt{3}}{12}$ |
![]() | $\dfrac{a^3}{12}$ |
![]() | $\dfrac{a^3}{9}$ |
![]() | $\dfrac{a^3\sqrt{2}}{9}$ |
Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $a$, góc giữa cạnh bên và mặt phẳng đáy bằng $60^\circ$. Tính độ dài đường cao của hình chóp đã cho.
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA$ vuông góc với mặt phẳng đáy, góc giữa $SA$ và mặt phẳng $(SBC)$ bằng $45^\circ$ (tham khảo hình bên).
Thể tích của khối chóp $S.ABC$ bằng
![]() | $\dfrac{a^3}{8}$ |
![]() | $\dfrac{3a^3}{8}$ |
![]() | $\dfrac{\sqrt{3}a^3}{12}$ |
![]() | $\dfrac{a^3}{4}$ |
Cho hình chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với mặt đáy một góc $60^\circ$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABCD$.
![]() | $V=\dfrac{a^3\sqrt{6}}{6}$ |
![]() | $V=\dfrac{a^3\sqrt{6}}{2}$ |
![]() | $V=\dfrac{a^3\sqrt{6}}{3}$ |
![]() | $V=\dfrac{a^3}{3}$ |