Ngân hàng bài tập

Bài tập tương tự

A

Cho hình chóp $S.ABC$ có góc tạo bởi các cạnh bên và mặt đáy bằng nhau. Gọi $H$ là hình chiếu vuông góc của $S$ trên mặt đáy. Phát biểu nào sau đây đúng nhất?

$S.ABC$ là hình chóp đều
$H$ là trực tâm của $\triangle ABC$
$H$ là tâm đường tròn ngoại tiếp $\triangle ABC$
$H$ là tâm đường tròn nội tiếp $\triangle ABC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ trên đáy là điểm $H$ trên cạnh $AC$ sao cho $AH=\dfrac{2}{3}AC$; mặt phẳng $(SBC)$ tạo với đáy một góc $60^{\circ}$. Thể tích khối chóp $S.ABC$ là

$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3\sqrt{3}}{48}$
$\dfrac{a^3\sqrt{3}}{36}$
$\dfrac{a^3\sqrt{3}}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho tứ diện $OABC$ có $OA$, $OB$, $OC$ đôi một vuông góc. Gọi $OH$ là đường cao của tứ diện. Khi đó $H$ là

Trọng tâm $\triangle ABC$
Trực tâm $\triangle ABC$
Tâm đường tròn nội tiếp $\triangle ABC$
Tâm đường tròn ngoại tiếp $\triangle ABC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có $SA=SB=SC$ và $H$ là hình chiếu vuông góc của $S$ trên mặt phẳng $\left(ABC\right)$. Phát biểu nào sau đây không đúng?

$H$ là tâm đường tròn ngoại tiếp tam giác $ABC$
$S.ABC$ là hình chóp đều
$\widehat{SAH}=\widehat{SBH}=\widehat{SCH}$
$HA=HB=HC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy là tam giác đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng

$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3}{12}$
$\dfrac{a^3}{9}$
$\dfrac{a^3\sqrt{2}}{9}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có $SA=SB=SC$ và đáy là tam giác $ABC$ vuông cân tại $A$. Trong các mệnh đề dưới đây, có bao nhiêu mệnh đề đúng?

  • (E) $S.ABC$ là hình chóp đều.
  • (F) $\triangle ABC$ có tâm đường tròn ngoại tiếp là trung điểm $BC$.
  • (G) Chân đường cao của hình chóp trùng với tâm đường tròn ngoại tiếp $\triangle ABC$.
$0$
$1$
$2$
$3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABC\) có đáy là tam giác đều cạnh \(4a\), \(SA\) vuông góc với mặt phẳng đáy, góc giữa mặt phẳng \(\left(SBC\right)\) và mặt phẳng đáy bằng \(60^\circ\). Diện tích của mặt cầu ngoại tiếp hình chóp \(S.ABC\) bằng

\(\dfrac{172\pi a^2}{3}\)
\(\dfrac{76\pi a^2}{3}\)
\(84\pi a^2\)
\(\dfrac{172\pi a^2}{9}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.

$V=\dfrac{7\sqrt{6}a^3}{72}$
$V=\dfrac{7\sqrt{6}a^3}{36}$
$V=\dfrac{5\sqrt{6}a^3}{36}$
$V=\dfrac{5\sqrt{6}a^3}{72}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là

$\dfrac{3a^3}{16}$
$\dfrac{a^3}{16}$
$\dfrac{a^3\sqrt{3}}{16}$
$\dfrac{3\sqrt{3}a^3}{16}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.

$V=\dfrac{1}{12}$
$V=\dfrac{1}{3}$
$V=\dfrac{1}{6}$
$V=\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.

$\dfrac{a^3\sqrt{7}}{18}$
$\dfrac{a^3\sqrt{7}}{6}$
$\dfrac{a^3\sqrt{7}}{3}$
$\dfrac{a^3\sqrt{7}}{12}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng

$\dfrac{\sqrt{3}}{4}a^3$
$\dfrac{\sqrt{3}}{2}a^3$
$\dfrac{3\sqrt{3}}{4}a^3$
$\dfrac{3\sqrt{3}}{2}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp đều $S.ABCD$ có đáy bằng a và chiều cao bằng $\dfrac{\sqrt{3}a}{6}$. Góc giữa mặt phẳng $(SCD)$ và mặt phẳng đáy bằng

$45^\circ$
$90^\circ$
$60^\circ$
$30^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SC$ trên mặt phẳng $(ABC)$ là đường thẳng

$AC$
$BC$
$AB$
$SC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SB$ trên mặt phẳng $(ABC)$ là đường thẳng

$AB$
$BC$
$SB$
$AC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).

Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng

$\dfrac{\sqrt{3}}{3}a$
$\sqrt{2}a$
$\dfrac{2\sqrt{3}}{3}a$
$\dfrac{\sqrt{2}}{2}a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy là tam giác vuông tại $B$, $SA$ vuông góc với đáy và $SA=AB$ (tham khảo hình bên).

Góc giữa hai mặt phẳng $(SBC)$ và $(ABC)$ bằng

$60^{\circ}$
$30^{\circ}$
$90^{\circ}$
$45^{\circ}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có $SA=SB=SC=AB=AC=10$, $BC=10\sqrt{2}$. Gọi $M$ là trung điểm của $BC$ và $\alpha$ là góc giữa $AM$ và $SB$. Tính $\cos\alpha$.

$\cos\alpha=\dfrac{1}{3}$
$\cos\alpha=\dfrac{2}{5}$
$\cos\alpha=0$
$\cos\alpha=\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho tứ diện $ABCD$, trên các cạnh $BC$, $BD$, $AC$ lần lượt lấy các điểm $M,\,N,\,P$ sao cho $BC=3BM$, $BD=\dfrac{3}{2}BN$, $AC=2AP$. Mặt phẳng $(MNP)$ chia khối tứ diện $ABCD$ thành hai khối đa diện có thể tích là $V_1$, $V_2$, trong đó khối đa diện chứa cạnh $CD$ có thể tích là $V_2$. Tính tỉ số $\dfrac{V_1}{V_2}$.

$\dfrac{V_1}{V_2}=\dfrac{26}{19}$
$\dfrac{V_1}{V_2}=\dfrac{26}{13}$
$\dfrac{V_1}{V_2}=\dfrac{3}{19}$
$\dfrac{V_1}{V_2}=\dfrac{15}{19}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$. Biết diện tích tứ giác $ABCD$ bằng ba lần diện tích tam giác $SAB$. Tính thể tích khối chóp đã cho.

$\dfrac{a^3\sqrt{7}}{9}$
$\dfrac{a^3\sqrt{7}}{6}$
$\dfrac{a^3\sqrt{7}}{12}$
$\dfrac{a^3\sqrt{7}}{18}$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự