Cho hình chóp $S.ABC$ có đáy là tam giác vuông cân tại $B$, $AB=2a$ và $SA$ vuông góc với mặt phẳng đáy. Khoảng cách từ $C$ đến mặt phẳng $(SAB)$ bằng
$\sqrt2a$ | |
$2a$ | |
$a$ | |
$2\sqrt2a$ |
Cho hình chóp \(S.ABC\) có ba cạnh \(AS,\,AB,\,AC\) đôi một vuông góc và có độ dài bằng \(a\sqrt{2}\).
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, cạnh \(a\). Cạnh bên \(SA=a\sqrt{3}\) và vuông góc với mặt đáy. Tính:
Cho tứ diện $ABCD$ có hai mặt $\left(ABC\right)$ và $\left(BCD\right)$ vuông góc với nhau. Biết rằng $\triangle ABC$ đều cạnh $2a$ và $M$ là trung điểm $BC$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $\left(BCD\right)$.
$2a$ | |
$a\sqrt{3}$ | |
$2a\sqrt{3}$ | |
$\dfrac{a\sqrt{3}}{2}$ |
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\). Biết \(AC=a\), \(BC=\dfrac{a}{2}\), \(SA=\dfrac{a\sqrt{3}}{2}\) và cạnh \(SA\) vuông góc với mặt phẳng đáy. Khoảng cách từ \(A\) đến mặt phẳng \((SBC)\) bằng
\(\dfrac{a\sqrt{6}}{4}\) | |
\(a\sqrt{6}\) | |
\(\dfrac{a\sqrt{3}}{2}\) | |
\(\dfrac{a\sqrt{6}}{2}\) |
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(1;2;1)\), \(B(2;1;3)\), \(C(3;2;2)\), \(D(1;1;1)\). Độ dài chiều cao \(DH\) của tứ diện bằng
\(\dfrac{\sqrt{14}}{14}\) | |
\(\dfrac{3\sqrt{14}}{14}\) | |
\(\dfrac{3\sqrt{14}}{7}\) | |
\(\dfrac{4\sqrt{14}}{7}\) |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.
$\dfrac{a\sqrt{3}}{4}$ | |
$\dfrac{a\sqrt{3}}{2}$ | |
$a\sqrt{3}$ | |
$\dfrac{a\sqrt{3}}{3}$ |
Cho hình chóp $S.ABC$ có đáy là tam giác đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng
$\dfrac{a^3\sqrt{3}}{12}$ | |
$\dfrac{a^3}{12}$ | |
$\dfrac{a^3}{9}$ | |
$\dfrac{a^3\sqrt{2}}{9}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng
$\dfrac{\sqrt{3}}{4}a^3$ | |
$\dfrac{\sqrt{3}}{2}a^3$ | |
$\dfrac{3\sqrt{3}}{4}a^3$ | |
$\dfrac{3\sqrt{3}}{2}a^3$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
$45^\circ$ | |
$90^\circ$ | |
$30^\circ$ | |
$60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
$60^\circ$ | |
$90^\circ$ | |
$30^\circ$ | |
$45^\circ$ |
Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?
$AB\perp BC$ | |
$SA\perp AC$ | |
$SA\perp(ABC)$ | |
$\big(SA,(ABC)\big)=90^\circ$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc
$\widehat{SCA}$ | |
$\widehat{SCB}$ | |
$\widehat{SAC}$ | |
$\widehat{ASC}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ là góc
$\widehat{SBA}$ | |
$\widehat{SBC}$ | |
$\widehat{SAB}$ | |
$\widehat{ASB}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SA$ và mặt phẳng $(ABC)$ có số đo là
$90^\circ$ | |
$0^\circ$ | |
$180^\circ$ | |
$90$ |
Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).
Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng
$\dfrac{\sqrt{3}}{3}a$ | |
$\sqrt{2}a$ | |
$\dfrac{2\sqrt{3}}{3}a$ | |
$\dfrac{\sqrt{2}}{2}a$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.
$\dfrac{a\sqrt{3}}{4}$ | |
$\dfrac{a\sqrt{3}}{2}$ | |
$a\sqrt{3}$ | |
$\dfrac{a\sqrt{3}}{3}$ |
Cho hình chóp $S.ABC$ có đáy là tam giác $ABC$ đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng
$\dfrac{a^3\sqrt{3}}{12}$ | |
$\dfrac{a^3}{12}$ | |
$\dfrac{a^3}{9}$ | |
$\dfrac{a^3\sqrt{2}}{9}$ |
Cho hình chóp $S.ABC$ có tam giác $SBC$ là tam giác vuông cân tại $S$, cạnh $SB=2a$ và khoảng cách từ $A$ đến mặt phẳng $(SBC)$ là $3a$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABC$.
$V=2a^3$ | |
$V=4a^3$ | |
$V=6a^3$ | |
$V=12a^3$ |
Cho tứ diện $OABC$ có $OA,\,OB,\,OC$ đôi một vuông góc với nhau và $OA=OB=OC=a$. Gọi $D$ là trung điểm của đoạn $BC$. Khoảng cách giữa hai đường thẳng $OD$ và $AB$ bằng
$\dfrac{a\sqrt{3}}{3}$ | |
$\dfrac{a\sqrt{6}}{2}$ | |
$\dfrac{a\sqrt{6}}{3}$ | |
$\dfrac{a\sqrt{3}}{2}$ |