Ngân hàng bài tập

Bài tập tương tự

S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.

$\dfrac{a\sqrt{3}}{4}$
$\dfrac{a\sqrt{3}}{2}$
$a\sqrt{3}$
$\dfrac{a\sqrt{3}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình chữ nhật và $AD=a$, $AB=2a$. Biết tam giác $SAB$ là tam giác đều và mặt phẳng $(SAB)$ vuông góc với mặt phẳng $(ABCD)$. Tính khoảng cách từ điểm $A$ đến mặt phẳng $(SBD)$.

$\dfrac{a\sqrt{3}}{4}$
$\dfrac{a\sqrt{3}}{2}$
$a\sqrt{3}$
$\dfrac{a\sqrt{3}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $\widehat{ABC}=30^\circ$. Tam giác $SBC$ là tam giác đều cạnh $a$ và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối chóp $S.ABC$ là

$\dfrac{3a^3}{16}$
$\dfrac{a^3}{16}$
$\dfrac{a^3\sqrt{3}}{16}$
$\dfrac{3\sqrt{3}a^3}{16}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, tam giác $SAB$ đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp $S.ABC$.

$\dfrac{a^3\sqrt{3}}{18}$
$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3}{8}$
$\dfrac{a^3}{6}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$ và có $AB=a$, $BC=a\sqrt{3}$. Mặt bên $(SAB)$ là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng $(ABC)$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABC$.

$V=\dfrac{a^3\sqrt{6}}{12}$
$V=\dfrac{a^3\sqrt{6}}{4}$
$V=\dfrac{a^3\sqrt{6}}{6}$
$V=\dfrac{a^3\sqrt{6}}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Mặt bên $(SAB)$ là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng $(ABC)$. Tính theo $a$ thể tích $V$ của khối chóp $S.ABC$.

$V=\dfrac{a^3}{24}$
$V=\dfrac{a^3}{4}$
$V=\dfrac{3a^3}{8}$
$V=\dfrac{a^3}{8}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác đều, cạnh \(a\). Cạnh bên \(SA=a\sqrt{3}\) và vuông góc với mặt đáy. Tính:

  1. Thể tích của khối chóp
  2. Khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\).
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo

$45^\circ$
$90^\circ$
$30^\circ$
$60^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo

$60^\circ$
$90^\circ$
$30^\circ$
$45^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có đáy là tam giác vuông cân tại $B$, $AB=2a$ và $SA$ vuông góc với mặt phẳng đáy. Khoảng cách từ $C$ đến mặt phẳng $(SAB)$ bằng

$\sqrt2a$
$2a$
$a$
$2\sqrt2a$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Cho tứ diện $OABC$ có $OA,\,OB,\,OC$ đôi một vuông góc với nhau và $OA=OB=OC=a$. Gọi $D$ là trung điểm của đoạn $BC$. Khoảng cách giữa hai đường thẳng $OD$ và $AB$ bằng

$\dfrac{a\sqrt{3}}{3}$
$\dfrac{a\sqrt{6}}{2}$
$\dfrac{a\sqrt{6}}{3}$
$\dfrac{a\sqrt{3}}{2}$
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp \(S.ABC\) có ba cạnh \(AS,\,AB,\,AC\) đôi một vuông góc và có độ dài bằng \(a\sqrt{2}\).

  1. Tính thể tích khối chóp
  2. Tính khoảng cách từ điểm \(A\) đến mặt phẳng \((SBC)\).
3 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABC$ có cạnh bên $SA=a\sqrt{3}$ và hợp với đáy một góc $60^\circ$. Tính khoảng cách từ điểm $S$ đến mặt đáy.

$a\sqrt{3}$
$\dfrac{3a}{2}$
$\dfrac{a\sqrt{3}}{2}$
$2a$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABC\) có đáy là tam giác vuông tại \(A\), \(AB=2a\), \(AC=4a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=a\) (minh họa như hình vẽ). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SM\) và \(BC\) bằng

\(\dfrac{2a}{3}\)
\(\dfrac{a\sqrt{6}}{3}\)
\(\dfrac{a\sqrt{3}}{3}\)
\(\dfrac{a}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AB=2a\), \(AD=DC=CB=a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=3a\) (như hình minh họa trên). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SB\) và \(DM\) bằng

\(\dfrac{3a}{4}\)
\(\dfrac{3a}{2}\)
\(\dfrac{3\sqrt{13}a}{13}\)
\(\dfrac{6\sqrt{13}a}{13}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A(1;2;1)\), \(B(2;1;3)\), \(C(3;2;2)\), \(D(1;1;1)\). Độ dài chiều cao \(DH\) của tứ diện bằng

\(\dfrac{\sqrt{14}}{14}\)
\(\dfrac{3\sqrt{14}}{14}\)
\(\dfrac{3\sqrt{14}}{7}\)
\(\dfrac{4\sqrt{14}}{7}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.

$V=\dfrac{1}{12}$
$V=\dfrac{1}{3}$
$V=\dfrac{1}{6}$
$V=\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng

$\dfrac{\sqrt{3}}{4}a^3$
$\dfrac{\sqrt{3}}{2}a^3$
$\dfrac{3\sqrt{3}}{4}a^3$
$\dfrac{3\sqrt{3}}{2}a^3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ trên đáy là điểm $H$ trên cạnh $AC$ sao cho $AH=\dfrac{2}{3}AC$; mặt phẳng $(SBC)$ tạo với đáy một góc $60^{\circ}$. Thể tích khối chóp $S.ABC$ là

$\dfrac{a^3\sqrt{3}}{12}$
$\dfrac{a^3\sqrt{3}}{48}$
$\dfrac{a^3\sqrt{3}}{36}$
$\dfrac{a^3\sqrt{3}}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?

$AB\perp BC$
$SA\perp AC$
$SA\perp(ABC)$
$\big(SA,(ABC)\big)=90^\circ$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự