Cho hình lăng trụ $ABC.DEF$ có hình chiếu vuông góc của $D$ trên mặt phẳng $(ABC)$ là trung điểm $M$ của $BC$. Phát biểu nào sau đây là đúng?
$ABC.DEF$ là hình lăng trụ đều | |
Tam giác $AMD$ vuông tại $A$ | |
$AD$ là đường cao của lăng trụ | |
$MD$ là đường cao của lăng trụ |
Cho hình lăng trụ tam giác $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh $2a$, hình chiếu của $A'$ trên mặt phẳng $(ABC)$ là trung điểm cạnh $BC$. Biết góc giữa hai mặt phẳng $(ABA')$ và $(ABC)$ bằng $45^\circ$. Thể tích khối lăng trụ $ABC.A'B'C'$ bằng
$\dfrac{3}{2}a^3$ | |
$\dfrac{1}{2}a^3$ | |
$2\sqrt{3}a^3$ | |
$\dfrac{2\sqrt{3}}{3}a^3$ |
Hình lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$. Hình chiếu vuông góc của $A'$ lên mặt phẳng $(ABC)$ là điểm $I$ thuộc cạnh $BC$. Khoảng cách từ $A$ tới mặt phẳng $(A'BC)$ bằng
$\dfrac{2}{5}a$ | |
$\dfrac{\sqrt{3}}{2}a$ | |
$\dfrac{2a\sqrt{5}}{5}$ | |
$\dfrac{a\sqrt{5}}{5}$ |
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $A$, $AB=2a$. Góc giữa đường thẳng $BC'$ và mặt phẳng $(ACC'A')$ bằng $30^\circ$. Thể tích của khối lăng trụ đã cho bằng
$3a^3$ | |
$a^3$ | |
$12\sqrt{2}a^3$ | |
$4\sqrt{2}a^3$ |
Cho lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác đều cạnh bằng $2a$. Hình chiếu vuông góc của $A'$ lên mặt phẳng $(ABC)$ trùng với trung điểm $H$ của cạnh $BC$ và $A'H=a\sqrt{3}$. Tính theo $a$ thể tích $V$ của khối lăng trụ $ABC.A'B'C'$.
$V=3a^3$ | |
$V=a^3$ | |
$V=\dfrac{3a^3}{4}$ | |
$V=\dfrac{3a^3}{2}$ |
Cho hình lăng trụ $ABC.A'B'C'$ cạnh bên bằng $a\sqrt{3}$ và góc tạo bởi đường thẳng $AA'$ với mặt đáy $(ABC)$ bằng $60^\circ$. Chiều cao của $ABC.A'B'C'$ bằng
$a\sqrt{3}$ | |
$\dfrac{3a}{2}$ | |
$\dfrac{a\sqrt{3}}{2}$ | |
$2a$ |
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(CC'\) (tham khảo hình vẽ).
Khoảng cách từ \(M\) đến mặt phẳng \(\left(A'BC\right)\) bằng
\(\dfrac{\sqrt{21}a}{14}\) | |
\(\dfrac{\sqrt{2}a}{2}\) | |
\(\dfrac{\sqrt{21}a}{7}\) | |
\(\dfrac{\sqrt{2}a}{4}\) |
Cho khối chóp tứ giác đều $S.ABCD$ có cạnh đáy bằng $a$, cạnh bên hợp với đáy một góc $60^\circ$. Gọi $M$ là điểm đối xứng với $C$ qua $D$, $N$ là trung điểm $SC$. Mặt phẳng $(BMN)$ chia khối chóp thành hai khối đa diện. Tính thể tích $V$ của khối đa diện chứa đỉnh $C$.
$V=\dfrac{7\sqrt{6}a^3}{72}$ | |
$V=\dfrac{7\sqrt{6}a^3}{36}$ | |
$V=\dfrac{5\sqrt{6}a^3}{36}$ | |
$V=\dfrac{5\sqrt{6}a^3}{72}$ |
Cho hình chóp $S.ABC$ có đáy là tam giác đều cạnh $a$. Hình chiếu của điểm $S$ trên mặt phẳng $(ABC)$ là điểm $H$ trên cạnh $AC$ thỏa mãn $AH=\dfrac{2}{3}AC$. Đường thẳng $SC$ tạo với mặt phẳng $(ABC)$ một góc bằng $60^\circ$. Thể tích của khối chóp $S.ABC$ bằng
$\dfrac{a^3\sqrt{3}}{12}$ | |
$\dfrac{a^3}{12}$ | |
$\dfrac{a^3}{9}$ | |
$\dfrac{a^3\sqrt{2}}{9}$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác vuông tại $A$, $AB=a$, $AC=2a$, $SA$ vuông góc với mặt phẳng đáy và $SB$ tạo với mặt đáy một góc $60^\circ$. Gọi $M,\,N$ lần lượt là trung điểm của $SB$ và $BC$. Thể tích khối chóp $A.SCNM$ bằng
$\dfrac{\sqrt{3}}{4}a^3$ | |
$\dfrac{\sqrt{3}}{2}a^3$ | |
$\dfrac{3\sqrt{3}}{4}a^3$ | |
$\dfrac{3\sqrt{3}}{2}a^3$ |
Cho hình chóp $S.ABC$ có góc tạo bởi các cạnh bên và mặt đáy bằng nhau. Gọi $H$ là hình chiếu vuông góc của $S$ trên mặt đáy. Phát biểu nào sau đây đúng nhất?
$S.ABC$ là hình chóp đều | |
$H$ là trực tâm của $\triangle ABC$ | |
$H$ là tâm đường tròn ngoại tiếp $\triangle ABC$ | |
$H$ là tâm đường tròn nội tiếp $\triangle ABC$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$. Hình chiếu vuông góc của $S$ trên đáy là điểm $H$ trên cạnh $AC$ sao cho $AH=\dfrac{2}{3}AC$; mặt phẳng $(SBC)$ tạo với đáy một góc $60^{\circ}$. Thể tích khối chóp $S.ABC$ là
$\dfrac{a^3\sqrt{3}}{12}$ | |
$\dfrac{a^3\sqrt{3}}{48}$ | |
$\dfrac{a^3\sqrt{3}}{36}$ | |
$\dfrac{a^3\sqrt{3}}{24}$ |
Cho hình chóp \(S.ABCD\) có đáy là hình thang, \(AB=2a\), \(AD=DC=CB=a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA=3a\) (như hình minh họa trên). Gọi \(M\) là trung điểm của \(AB\). Khoảng cách giữa hai đường thẳng \(SB\) và \(DM\) bằng
\(\dfrac{3a}{4}\) | |
\(\dfrac{3a}{2}\) | |
\(\dfrac{3\sqrt{13}a}{13}\) | |
\(\dfrac{6\sqrt{13}a}{13}\) |
Cho hình lăng trụ đều $ABC.A'B'C'$ có $AB=a$, $AA'=a\sqrt{3}$. Tính góc tạo bởi đường thẳng $AC'$ và mặt phẳng $(ABC)$.
$60^\circ$ | |
$45^\circ$ | |
$30^\circ$ | |
$75^\circ$ |
Cho khối hộp chữ nhật $ABCD.A'B'C'D'$. Gọi $M$ là trung điểm của $BB'$. Mặt phẳng $(MDC')$ chia khối hộp chữ nhật thành hai khối đa diện, một khối chứa đỉnh $C$ và một khối chứa đỉnh $A'$. Gọi $V_1,\,V_2$ lần lượt là thể tích hai khối đa diện chứa $C$ và $A'$. Tỉ số $\dfrac{V_1}{V_2}$ bằng
$\dfrac{V_1}{V_2}=\dfrac{7}{17}$ | |
$\dfrac{V_1}{V_2}=\dfrac{7}{24}$ | |
$\dfrac{V_1}{V_2}=\dfrac{17}{24}$ | |
$\dfrac{V_1}{V_2}=\dfrac{7}{12}$ |
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB=1$, $BC=2$, $AA'=2$ (tham khảo hình bên).
Khoảng cách giữa hai đường thẳng $AD'$ và $DC'$ bằng
$\sqrt{2}$ | |
$\dfrac{\sqrt{6}}{2}$ | |
$\dfrac{2\sqrt{5}}{5}$ | |
$\dfrac{\sqrt{6}}{3}$ |
Cho hình lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $A$ với $AC=4a$ và mặt bên $AA'B'B$ là hình vuông. Thể tích của khối lăng trụ $ABC.A'B'C'$ bằng
$\dfrac{a^3}{8}$ | |
$64a^3$ | |
$\dfrac{a^3}{4}$ | |
$32a^3$ |
Cho khối lăng trụ đứng $ABC.A'B'C'$ có đáy $ABC$ là tam giác vuông cân tại $B$, $AB=a$. Biết khoảng cách từ $A$ đến mặt phẳng $(A'BC)$ bằng $\dfrac{\sqrt{6}}{3}a$, thể tích khối lăng trụ đã cho bằng
$\dfrac{\sqrt{2}}{6}a^3$ | |
$\dfrac{\sqrt{2}}{2}a^3$ | |
$\sqrt{2}a^3$ | |
$\dfrac{\sqrt{2}}{4}a^3$ |
Cho hình lăng trụ đều $ABC.A'B'C'$ có $AB=a$, $AA'=a\sqrt{3}$. Tính góc tạo bởi đường thẳng $AC'$ và mặt phẳng $(ABC)$.
$60^\circ$ | |
$45^\circ$ | |
$30^\circ$ | |
$75^\circ$ |
Cho hình hộp chữ nhật $ABCD.A'B'C'D'$ có $AB=a$, $BC=2a$ và $AA'=3a$ (tham khảo hình bên).
Khoảng cách giữa hai đường thẳng $BD$ và $A'C'$ bằng
$a$ | |
$a\sqrt{2}$ | |
$2a$ | |
$3a$ |