Ngân hàng bài tập

Bài tập tương tự

Cho hình chóp $S.ABCD$ với đáy là hình bình hành tâm $O$. Gọi $G$ là trọng tâm của tam giác $SAB$. Hãy tìm

  1. Giao tuyến của $(SGC)$ và $(ABCD)$.
  2. Giao điểm của đường thẳng $AD$ và $(SGC)$.
  3. Giao điểm của đường thẳng $SO$ và $(GCD)$.
  4. Giao điểm của đường thẳng $SD$ và $(BCG)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho tứ diện $ABCD$. Trên $AC$ và $AD$ lần lượt lấy các điểm $M$, $N$ sao cho $MN$ không song song với $CD$. Gọi $P$ là điểm thuộc miền trong của tam giác $BCD$. Hãy tìm

  1. Giao điểm của đường thẳng $MN$ và $(BCD)$.
  2. Giao điểm của đường thẳng $AP$ và $(BMN)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho tứ diện $SABC$ có hai điểm $M$, $N$ lần lượt thuộc hai cạnh $SA$, $SB$ và $O$ là điểm nằm trong tam giác $ABC$. Hãy tìm

  1. Giao điểm của đường thẳng $AB$ và $(SOC)$.
  2. Giao điểm của đường thẳng $MN$ và $(SOC)$.
  3. Giao điểm của đường thẳng $SO$ và $(CMN)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho tứ diện $SABC$ có $M$ là điểm nằm trên tia đối của tia $SA$, $O$ là điểm thuộc miền trong của tam giác $ABC$. Hãy tìm

  1. Giao điểm của đường thẳng $BC$ và $(SOA)$.
  2. Giao điểm của đường thẳng $MO$ và $(SBC)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành và có thể tích bằng $1$. Trên cạnh $SC$ lấy điểm $E$ sao cho $SE=2EC$. Tính thể tích $V$ của khối tứ diện $SEBD$.

$V=\dfrac{1}{12}$
$V=\dfrac{1}{3}$
$V=\dfrac{1}{6}$
$V=\dfrac{2}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA$, $SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?

$\dfrac{V'}{V}=\dfrac{1}{6}$
$\dfrac{V'}{V}=\dfrac{2}{5}$
$\dfrac{V'}{V}=\dfrac{1}{3}$
$\dfrac{V'}{V}=\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành, $SA=SB=SC=AC=a$, $SB$ tạo với mặt phẳng $(SAC)$ một góc $30^\circ$. Thể tích khối chóp đã cho bằng

$\dfrac{a^3}{4}$
$\dfrac{a^3}{8}$
$\dfrac{\sqrt{3}a^3}{12}$
$\dfrac{\sqrt{3}a^3}{24}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $I$ và $SA=SC$, $SB=SD$. Đường thẳng nào sau đây vuông góc với mặt phẳng $(ABCD)$?

$SI$
$SA$
$SB$
$SC$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Cho khối chóp tứ giác $S.ABCD$ có thể tích $V$ và đáy là hình bình hành. Gọi $N$ là điểm trên cạnh $SD$ sao cho $ND=2NS$. Một mặt phẳng chứa $BN$ và song song với $AC$, cắt $SA,\,SC$ lần lượt tại $P,\,Q$. Gọi $V'$ là thể tích của khối chóp $S.BPNQ$. Khẳng định nào dưới đây đúng?

$\dfrac{V'}{V}=\dfrac{1}{6}$
$\dfrac{V'}{V}=\dfrac{2}{5}$
$\dfrac{V'}{V}=\dfrac{1}{3}$
$\dfrac{V'}{V}=\dfrac{1}{4}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $N,\,P$ lần lượt là trung điểm của các cạnh $BC,\,AD$; $K$ là giao $BP$ và $AN$. Khi đó $SK$ là giao tuyến của mặt phẳng $(SAN)$ và mặt phẳng nào sau đây?

$(SPC)$
$(SCD)$
$(SBC)$
$(SBP)$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong mặt phẳng $(\alpha)$, cho hình bình hành $ABCD$ tâm $O$, $S$ là một điểm không thuộc $(\alpha)$. Gọi $M,\,N,\,P$ lần lượt là trung điểm của $BC$, $CD$ và $SO$. Đường thẳng $MN$ cắt $AB$, $AC$ và $AD$ tại $M_1$, $N_1$ và $O_1$. Nối $N_1P$ cắt $SA$ tại $P_1$, nối $M_1P_1$ cắt $SB$ tại $M_2$, nối $O_1P_1$ cắt $SD$ tại $N_2$. Khi đó giao tuyến của $(MNP)$ với $(SAB)$ là

$P_1N_2$
$P_1M_2$
$P_1C$
$M_1N_1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
SS

Trong mặt phẳng $(\alpha)$, cho hình bình hành $ABCD$ tâm $O$, $S$ là một điểm không thuộc $(\alpha)$. Gọi $M,\,N,\,P$ lần lượt là trung điểm của $BC$, $CD$ và $SO$. Đường thẳng $MN$ cắt $AB$, $AC$ và $AD$ tại $M_1$, $N_1$ và $O_1$. Nối $N_1P$ cắt $SA$ tại $P_1$, nối $M_1P_1$ cắt $SB$ tại $M_2$, nối $O_1P_1$ cắt $SD$ tại $N_2$. Khi đó thiết diện của mặt phẳng $(MNP)$ với hình chóp $S.ABCD$ là

Tam giác $MNP$
Tứ giác $BM_2N_2N$
Ngũ giác $NMM_2P_1N_2$
Tam giác $P_1M_1N_1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $d$ là giao tuyến của hai mặt phẳng $(SAD)$ và $(SBC)$. Khẳng định nào sau đây đúng?

$d$ qua $S$ và song song với $BC$
$d$ qua $S$ và song song với $DC$
$d$ qua $S$ và song song với $AB$
$d$ qua $S$ và song song với $BD$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $I$ là trung điểm $SA$. Thiết diện của hình chóp $S.ABCD$ cắt bởi $(IBC)$ là

Tam giác $IBC$
Hình thang $IGBC$ ($G$ là trung điểm $SB$)
Hình thang $IJCB$ ($J$ là trung điểm $SD$)
Tứ giác $IBCD$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M,\,N$ lần lượt là trung điểm $AD$ và $BC$. Giao tuyến của hai mặt phẳng $(SMN)$ và $(SAC)$ là

$SD$
$SO$ ($O$ là tâm của hình bình hành $ABCD$)
$SG$ ($G$ là trung điểm cạnh $AB$)
$SF$ ($F$ là trung điểm cạnh $CD$)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Cho khối chóp $S.ABCD$ có đáy là hình bình hành và có thể tích $48$. Trên các cạnh $SA,\,SB,\,SC,\,SD$ lần lượt lấy các điểm $A',\,B',\,C'$ và $D'$ sao cho $\dfrac{SA'}{SA}=\dfrac{SC'}{SC}=\dfrac{1}{3}$ và $\dfrac{SB'}{SB}=\dfrac{SD'}{SD}=\dfrac{3}{4}$. Tính thể tích $V$ của khối đa diện lõm $S.A'B'C'D'$.

$V=4$
$V=9$
$V=\dfrac{3}{2}$
$V=6$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp $S.ABC$. Trên cạnh $SA$ lấy $M$ sao cho $SA=3SM$, trên cạnh $SC$ lấy điểm $N$ sao cho $SC=2SN$. Điểm $P$ thuộc cạnh $AB$. Hãy tìm

  1. Giao điểm của đường thẳng $MN$ và $(ABC)$.
  2. Giao điểm của đường thẳng $BC$ và $(MNP)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Cho hình chóp $S.ABCD$ có $ABCD$ là hình bình hành tâm $O$ và $SA=SB=SC=SD$. Đường cao của hình chóp là

$SO$
$SA$
$SC$
$SB$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O và $SA\bot\left(ABCD\right)$. Đường cao của hình chóp là

$SO$
$SA$
$SC$
$SB$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $M$, $N$, $P$ lần lượt là trung điểm các cạnh $BC$, $CD$, $SA$. Tìm giao tuyến của các cặp mặt phẳng sau:

  1. $(SAC)$ và $(SBD)$.
  2. $(MNP)$ và $(SAB)$.
  3. $(MNP)$ và $(SAD)$.
  4. $(MNP)$ và $(SBC)$.
  5. $(MNP)$ và $(SCD)$.
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự