Tìm tập xác định của hàm số $$y=2\sqrt{6-3x}-\dfrac{x}{\sqrt{x^2+1}}$$
$\mathscr{D}=(-\infty;2)$ | |
$\mathscr{D}=[2;-\infty)$ | |
$\mathscr{D}=(-\infty;2]\setminus\{\pm1\}$ | |
$\mathscr{D}=(-\infty;2]$ |
Tập xác định của hàm số $y=\dfrac{\sqrt{x^2+1}}{x+1}$ là
$\mathbb{R}\setminus\{-1\}$ | |
$(-1;1)$ | |
$\mathbb{R}\setminus\{\pm1\}$ | |
$\mathbb{R}$ |
Tập xác định của hàm số $y=\dfrac{\sqrt{2x+5}}{x^2-1}+\sqrt{4-x}$ là
$\mathscr{D}=\left[-\dfrac{5}{2};4\right]$ | |
$\mathscr{D}=\left(-\dfrac{5}{2};4\right)$ | |
$\mathscr{D}=\left[-\dfrac{5}{2};4\right]\setminus\{\pm1\}$ | |
$\mathscr{D}=\left[-\dfrac{5}{2};4\right]\setminus\{1\}$ |
Tìm tập xác định của hàm số $$y=\sqrt{x-1}-\dfrac{3x-1}{\left(x^2-4\right)\sqrt{5-x}}$$
$[1;5]\setminus\{2\}$ | |
$(-\infty;5]$ | |
$[1;5)\setminus\{2\}$ | |
$[1;+\infty)\setminus\{2;5\}$ |
Tìm tập xác định của hàm số $$y=\dfrac{\sqrt{x+1}}{\left(x^2-5x+6\right)\sqrt{4-x}}$$
$[-1;4)\setminus\{2;3\}$ | |
$[-1;4)$ | |
$(-1;4]\setminus\{2;3\}$ | |
$(-1;4)\setminus\{2;3\}$ |
Tìm tập xác định $\mathscr{D}$ của hàm số $$y=\dfrac{2x+1}{x^3-3x+2}$$
$\mathscr{D}=\mathbb{R}\setminus\{1;2\}$ | |
$\mathscr{D}=\mathbb{R}\setminus\{1;-2\}$ | |
$\mathscr{D}=\mathbb{R}\setminus\{-2\}$ | |
$\mathscr{D}=\mathbb{R}$ |
Tìm tập xác định $\mathscr{D}$ của hàm số $$y=\dfrac{x^2+1}{x^2+3x-4}$$
$\mathscr{D}=\{1;-4\}$ | |
$\mathscr{D}=\mathbb{R}\setminus\{1;-4\}$ | |
$\mathscr{D}=\mathbb{R}\setminus\{1;4\}$ | |
$\mathscr{D}=\mathbb{R}$ |
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?
$4$ | |
$2$ | |
$1$ | |
$3$ |
Tập xác định của hàm số $y=\dfrac{2}{\sqrt{2-\sin x}}$ là
$(2;+\infty)$ | |
$\mathbb{R}\setminus\{2\}$ | |
$\mathbb{R}$ | |
$[2;+\infty)$ |
Cho hàm số $y=\sqrt{\dfrac{1-\cos x}{1-\sin x}}$. Tập xác định của hàm số là
$\mathbb{R}\setminus\{\pi+k\pi,\,k\in\mathbb{Z}\}$ | |
$\mathbb{R}\setminus\left\{\dfrac{\pi}{2}+k2\pi,\,k\in\mathbb{Z}\right\}$ | |
$\{k2\pi,\,k\in\mathbb{Z}\}$ | |
$\mathbb{R}\setminus\{k\pi,\,k\in\mathbb{Z}\}$ |
Tập xác định của hàm số $y=\sin\dfrac{x}{x+1}$ là
$\mathscr{D}=(-\infty;-1)\cup(0;+\infty)$ | |
$\mathscr{D}=(-1;+\infty)$ | |
$\mathscr{D}=\mathbb{R}$ | |
$\mathscr{D}=\mathbb{R}\setminus\{-1\}$ |
Điều kiện xác định của hàm số $y=\dfrac{2}{\cos x-1}$ là
$\cos x\neq-1$ | |
$\cos x\neq1$ | |
$\cos x\neq2$ | |
$\cos x\neq0$ |
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+32}{4(x-2)}\) trên khoảng \((2;+\infty)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{4}{x}+\dfrac{x}{1-x}\) trên khoảng \((0;1)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{(x+2)(x+8)}{x}\) trên khoảng \((0;+\infty)\).
Tìm giá trị nhỏ nhất \(m\) của hàm số \(f(x)=\dfrac{x^2+2x+2}{x+1}\) trên khoảng \((-1;+\infty)\).
Cho hàm số $y=\dfrac{\sin x-\cos x+\sqrt{2}}{\sin x+\cos x+2}$. Giả sử hàm số có giá trị lớn nhất là $M$, giá trị nhỏ nhất là $N$. Khi đó, giá trị của $2M+N$ là
$4\sqrt{2}$ | |
$2\sqrt{2}$ | |
$4$ | |
$\sqrt{2}$ |
Trong các hàm số $y=\dfrac{x+3}{x-1}$, $y=x^4-3x^2+2$, $y=x^3-3x$, $y=\dfrac{x^2+2x-3}{x+1}$ có bao nhiêu hàm số xác định trên $\mathbb{R}$?
$2$ | |
$4$ | |
$1$ | |
$3$ |
Hàm số nào sau đây có tập xác định là $\mathbb{R}$?
$y=\dfrac{x}{x^2-1}$ | |
$y=3x^3-2|x|-3$ | |
$y=3x^3-2\sqrt{x}-3$ | |
$y=\dfrac{\sqrt{x}}{x^2+1}$ |
Tập xác định của hàm số $y=\dfrac{x+1}{\sqrt{x-1}(x-3)}$ là
$(1;+\infty)\setminus\{3\}$ | |
$\mathbb{R}\setminus\{3\}$ | |
$[1;3)\cup(3;+\infty)$ | |
$(1;+\infty)$ |