Điểm nào sau đây không thuộc đồ thị hàm số $y=\dfrac{\sqrt{x^2-4x+4}}{x}$?
![]() | $A(2;0)$ |
![]() | $B\left(3;\dfrac{1}{3}\right)$ |
![]() | $C(1;-1)$ |
![]() | $D(-1;-3)$ |
Điểm nào sau đây không thuộc đồ thị hàm số $y=x^4-2x^2-1$?
![]() | $A(-1;2)$ |
![]() | $B(2;7)$ |
![]() | $C(0;-1)$ |
![]() | $D(1;-2)$ |
Cho hàm số $f(x)$, trong đó $f(x)$ là một đa giác. Hàm số $f'(x)$ có đồ thị như hình vẽ bên.
Hỏi có bao nhiêu giá trị nguyên $m$ thuộc $(-5;5)$ để hàm số $y=g(x)=f\big(x^2-2|x|+m\big)$ có $9$ điểm cực trị?
![]() | $3$ |
![]() | $4$ |
![]() | $1$ |
![]() | $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị là đường cong như hình vẽ bên.
Hỏi phương trình $\big|f(x)-1\big|=1$ có bao nhiêu nghiệm?
![]() | $6$ |
![]() | $3$ |
![]() | $4$ |
![]() | $5$ |
Cho hàm số bậc hai $y=f(x)$ có đồ thị như hình vẽ.
Tìm số nghiệm thực của phương trình $\big|f\big(x^3-2x^2+x\big)\big|=2$.
![]() | $1$ |
![]() | $3$ |
![]() | $4$ |
![]() | $2$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.
Tìm số nghiệm thực của phương trình $\big|f\big(x^2-4x\big)\big|=\dfrac{3}{4}$.
![]() | $12$ |
![]() | $6$ |
![]() | $10$ |
![]() | $8$ |
Cho hàm số bậc ba $y=f(x)$ có đồ thị như hình vẽ.
Tìm số nghiệm thực của phương trình $\big|f\big(x^3-3x\big)\big|=2$.
![]() | $12$ |
![]() | $6$ |
![]() | $10$ |
![]() | $8$ |
Cho hàm số bậc bốn $y=f(x)$ thỏa mãn $f(0)=0$. Hàm số $y=f'(x)$ có đồ thị như hình vẽ.
Hàm số $g(x)=\left|2f\big(x^2+x\big)-x^4-2x^3+x^2+2x\right|$ có bao nhiêu cực trị?
![]() | $4$ |
![]() | $5$ |
![]() | $6$ |
![]() | $7$ |
Cho hàm số $f(x)=|-5x|$. Khẳng định nào sau đây là sai?
![]() | $f(-1)=5$ |
![]() | $f(2)=10$ |
![]() | $f(-2)=10$ |
![]() | $f\left(\dfrac{1}{5}\right)=-1$ |
Cho hàm số $f\left(x\right)=\left|-5x\right|$. Chọn mệnh đề sai?
![]() | $f\left(-1\right)=5$ |
![]() | $f\left(2\right)=10$ |
![]() | $f\left(-2\right)=10$ |
![]() | $f\left(\dfrac{1}{5}\right)=-1$ |
Cho hàm số \(y=f(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.
Hỏi đồ thị hàm số \(y=\left|f\left(|x|\right)\right|\) có tất cả bao nhiêu điểm cực trị?
![]() | \(9\) |
![]() | \(7\) |
![]() | \(6\) |
![]() | \(8\) |
Cho hàm số \(y=f(x)\) có đồ thị hàm số \(y=f\left(|x|\right)\) như hình vẽ.
Hãy chọn kết luận đúng.
![]() | \(f(x)=-x^3-x^2+4x+4\) |
![]() | \(f(x)=x^3+x^2-4x-4\) |
![]() | \(f(x)=x^3-x^2-4x+4\) |
![]() | \(f(x)=-x^3+x^2+4x-4\) |
Đồ thị như hình trên là của hàm số nào sau đây?
![]() | \(y=x^4-2x^2+2\) |
![]() | \(y=2\left(x^2-1\right)^2\) |
![]() | \(y=|x|^3-3|x|+2\) |
![]() | \(y=x^2-2|x|^2+2\) |
Cho hàm số \(y=f(x)\) có đồ thị như hình vẽ. Tìm \(\max\limits_{[-2;4]}\left|f(x)\right|\).
![]() | \(\left|f(0)\right|\) |
![]() | \(2\) |
![]() | \(3\) |
![]() | \(1\) |
Mệnh đề nào sau đây là sai?
![]() | Đồ thị hàm số \(y=\left|\sin x\right|\) đối xứng qua gốc tọa độ \(O\) |
![]() | Đồ thị hàm số \(y=\cos x\) đối xứng qua trục \(Oy\) |
![]() | Đồ thị hàm số \(y=\left|\tan x\right|\) đối xứng qua trục \(Oy\) |
![]() | Đồ thị hàm số \(y=\tan x\) đối xứng qua gốc tọa độ \(O\) |
Hàm số nào sau đây có đồ thị đối xứng qua gốc tọa độ?
![]() | \(y=\cot4x\) |
![]() | \(y=\dfrac{\sin x+1}{\cos x}\) |
![]() | \(y=\tan^2x\) |
![]() | \(y=\left|\cot x\right|\) |
Cho hàm số $y=\dfrac{ax+b}{cx+d}$ có đồ thị là đường cong trong hình vẽ bên.
Kết luận nào sau đây đúng?
![]() | $ad>0$, $bc< 0$ |
![]() | $ad< 0$, $bc>0$ |
![]() | $ad< 0$, $bc< 0$ |
![]() | $ad>0$, $bc>0$ |
Cho hàm số bậc bốn $y=f(x)$ có đồ thị là đường cong như hình vẽ bên dưới.
Có bao nhiêu giá trị nguyên âm của tham số $m$ để phương trình $f(x)=m$ có bốn nghiệm thực phân biệt?
![]() | $3$ |
![]() | $2$ |
![]() | $4$ |
![]() | $5$ |
Đường cong trong hình vẽ bên là đồ thị của một trong bốn hàm số dưới đây.
Hãy xác định hàm số đó.
![]() | $y=-x^4-4x^2+1$ |
![]() | $y=x^3-3x+1$ |
![]() | $y=-x^3+3x-1$ |
![]() | $y=x^3+3x+1$ |
Hàm số nào dưới đây có bảng biến thiên như hình bên?
![]() | $y=-x^3+3x+1$ |
![]() | $y=\dfrac{x-1}{x+1}$ |
![]() | $y=\dfrac{x+1}{x-1}$ |
![]() | $y=x^4-x^2+1$ |