Mặt phẳng \((P)\) tiếp xúc với mặt cầu \((S)\colon(x-1)^2+(y+3)^2+(z-2)^2=49\) tại điểm \(M(7;-1;5)\) có phương trình là
\(6x+2y+3z-55=0\) | |
\(6x+2y+3z+55=0\) | |
\(3x+y+z-22=0\) | |
\(3x+y+z+22=0\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\) có tâm \(I(3;2;-1)\) và đi qua điểm \(A(2;1;2)\). Mặt phẳng nào dưới đây tiếp xúc với \((S)\) tại \(A\)?
\(x+y-3z-8=0\) | |
\(x+y-3z+3=0\) | |
\(x+y+3z-9=0\) | |
\(x-y-3z+3=0\) |
Trong không gian $Oxyz$, cho hai điểm $A(1;4;3)$, $B(5;0;3)$. Một hình trụ $(T)$ nội tiếp trong mặt cầu đường kính $AB$ đồng thời nhận $AB$ làm trục của hình trụ. Gọi $M$ và $N$ lần lượt là tâm các đường tròn đáy của $(T)$ ($M$ nằm giữa $A$, $N$). Khi thiết diện qua trục của $(T)$ có diện tích lớn nhất thì mặt phẳng chứa đường tròn đáy tâm $M$ của $(T)$ có dạng $ax+by+cz+d=0$. Giá trị của $b-d$ bằng
$2\sqrt{2}$ | |
$2+2\sqrt{2}$ | |
$-2\sqrt{2}$ | |
$4+\sqrt{2}$ |
Trong không gian với hệ tọa độ $Oxyz$, cho điểm $I(1;-1;2)$ và mặt phẳng $(P)$ có phương trình $x+3y-z+2=0$.
Trong không gian \(Oxyz\), cho mặt phẳng \(\left(\alpha \right)\colon4x-3y+2z+28=0\) và điểm \(I\left(0;1;2\right)\). Viết phương trình của mặt cầu \(\left(S\right)\) có tâm \(I\) và tiếp xúc với mặt phẳng \(\left(\alpha\right)\).
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=29\) | |
\(\left(S\right)\colon x^2+\left(y-1\right)^2+\left(z-2\right)^2=\sqrt{29}\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=841\) | |
\(\left(S\right)\colon x^2+\left(y+1\right)^2+\left(z+2\right)^2=29\) |
Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt cầu có tâm \(I(3;-1;0)\) và tiếp xúc với mặt phẳng \((P)\colon x+2y-2z-10=0\)?
\((x-3)^2+(y+1)^2+z^2=9\) | |
\((x-3)^2+(y+1)^2+z^2=\dfrac{1}{9}\) | |
\((x+3)^2+(y-1)^2+z^2=9\) | |
\((x+3)^2+(y-1)^2+z^2=\dfrac{1}{9}\) |
Trong không gian với hệ tọa độ \(Oxyz\), cho mặt cầu \(\left(S\right)\colon\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=16\) và các điểm \(A\left(1;0;2\right)\), \(B\left(-1;2;2\right)\). Gọi \((P)\) là mặt phẳng đi qua hai điểm \(A,\,B\) sao cho thiết diện của mặt phẳng \((P)\) với mặt cầu \((S)\) có diện tích nhỏ nhất. Khi viết phương trình \((P)\) dưới dạng \(ax+by+cx+3=0\). Tính tổng \(T=a+b+c\).
\(-2\) | |
\(-3\) | |
\(0\) | |
\(3\) |
Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là
\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\) | |
\(x^2+y^2+z^2+2y-60=0\) | |
\(x^2+y^2+z^2-2y+55=0\) | |
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\) |
Trong không gian \(Oxyz\), cho ba điểm \(A(1;-2;3)\), \(B(4;2;3)\), \(C(3;4;3)\). Gọi \(\left(S_1\right),\,\left(S_2\right),\,\left(S_3\right)\) là các mặt cầu có tâm \(A,\,B,\,C\) và bán kính lần lượt là \(3,\,2,\,3\). Hỏi có bao nhiêu mặt phẳng qua điểm \(I\left(\dfrac{14}{5};\dfrac{2}{5};3\right)\) và tiếp xúc với cả ba mặt cầu \(\left(S_1\right),\,\left(S_2\right),\,\left(S_3\right)\)?
\(2\) | |
\(7\) | |
\(0\) | |
\(1\) |
Trong không gian \(Oxyz\), cho mặt cầu \((S)\colon(x-1)^2+(y-2)^2+(z+1)^2=6\) tiếp xúc với hai mặt phẳng \((P)\colon x+y+2z+5=0\), \((Q)\colon2x-y+z-5=0\) lần lượt tại các điểm \(A,\,B\). Độ dài đoạn thẳng \(AB\) bằng
\(3\sqrt{2}\) | |
\(2\sqrt{6}\) | |
\(2\sqrt{3}\) | |
\(\sqrt{3}\) |
Trong không gian $Oxyz$, cho điểm $M(2;-1;3)$ và mặt phẳng $(P)\colon3x-2y+z+1=0$. Phương trình mặt phẳng đi qua $M$ và song song với $(P)$ là
$3x-2y+z-11=0$ | |
$2x-y+3z-14=0$ | |
$3x-2y+z+11=0$ | |
$2x-y+3z+14=0$ |
Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+3)^2+y^2+(z-1)^2=10$. Mặt phẳng nào trong các mặt phẳng dưới đây cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính bằng $3$?
$\big(P_2\big)\colon x+2y-2z-8=0$ | |
$\big(P_4\big)\colon x+2y-2z-4=0$ | |
$\big(P_3\big)\colon x+2y-2z-2=0$ | |
$\big(P_1\big)\colon x+2y-2z+8=0$ |
Trong không gian $Oxyz$, cho ba điểm $A(2;1;-1)$, $B(-1;0;4)$, $C(0;-2;-1)$. Phương trình mặt phẳng đi qua $A$ và vuông góc với $BC$ là
$x-2y-5z+5=0$ | |
$x-2y-5=0$ | |
$2x-y+5z-5=0$ | |
$x-2y-5z-5=0$ |
Trong không gian $Oxyz$, cho $I(2;1;1)$ và mặt phẳng $(P)\colon2x+y+2z+2=0$. Viết phương trình mặt phẳng qua điểm $I$ và song song với mặt phẳng $(P)$.
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon x+y-2z-2=0$. Mặt phẳng $(Q)$ đi qua $A(1;2;-1)$ và song song với $(P)$ có phương trình là
$2x+2y-4z+1=0$ | |
$x+y-2z-5=0$ | |
$2x+y+z-3=0$ | |
$x+y-2z-3=0$ |
Trong không gian $Oxyz$, cho hai điểm $A(1;0;0)$ và $B(4;1;2)$. Mặt phẳng đi qua $A$ vuông góc với $AB$ có phương trình là
$3x+y+2z-17=0$ | |
$3x+y+2z-3=0$ | |
$5x+y+2z-5=0$ | |
$5x+y+2z-25=0$ |
Trong không gian $Oxyz$, cho hai điểm $A\left(1;0;3\right)$ và $B\left(-3;2;1\right)$. Mặt phẳng trung trực của đoạn thẳng $AB$ có phương trình là
$2x-y+z+1=0$ | |
$2x-y+z-1=0$ | |
$2x-y+z+7=0$ | |
$2x-y+z-5=0$ |
Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon4x-3y-1=0$ và hai điểm $A(3;-3;-1)$, $B(9;5;-1)$. Gọi $M$ là điểm thay đổi nằm trên mặt phẳng $(P)$ sao cho tam giác $ABM$ vuông tại $M$. Gọi $S_1,\,S_2$ tương ứng là giá trị nhỏ nhất và giá trị lớn nhất của diện tích tam giác $MAB$. Tính giá trị biểu thức $T=S_2-S_1$.
$T=5$ | |
$T=45$ | |
$T=1$ | |
$T=10$ |
Trong không gian $Oxyz$, viết phương trình mặt phẳng $(P)$ đi qua điểm $G(1;2;3)$ và cắt ba trục $Ox,\,Oy,\,Oz$ lần lượt tại $A,\,B,\,C$ sao cho $G$ là trọng tâm tam giác $ABC$.
$x+2y+3z-14=0$ | |
$\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{3}=1$ | |
$\dfrac{x}{3}+\dfrac{y}{6}+\dfrac{z}{9}=1$ | |
$\dfrac{x}{6}+\dfrac{y}{3}+\dfrac{z}{9}=1$ |
Trong không gian $Oxyz$, cho hai điểm $A(1;3;-4)$, $B(-1;1;2)$. Mặt phẳng trung trực của đoạn thẳng $AB$ có phương trình là
$x+y-3z-5=0$ | |
$-x-y+3z+2=0$ | |
$x+y-3z+10=0$ | |
$-2x-2y+6z-11=0$ |