Hàm số $y=2x^2+4x+1$
đồng biến trên $\left(-\infty;-2\right)$, nghịch biến trên $\left(-2;+\infty\right)$ | |
nghịch biến trên $\left(-\infty;-2\right)$, đồng biến trên $\left(-2;+\infty\right)$ | |
đồng biến trên $\left(-\infty;-1\right)$, nghịch biến trên $\left(-1;+\infty\right)$ | |
nghịch biến trên $\left(-\infty;-1\right)$, đồng biến trên $\left(-1;+\infty\right)$ |
Hàm số nào dưới đây đồng biến trên \((-\infty;+\infty)\)?
\(y=\dfrac{x-1}{x}\) | |
\(y=2x^3\) | |
\(y=x^2+1\) | |
\(y=x^4+5\) |
Hàm số \(y=x^2+4x+1\) đồng biến trên khoảng
\((-\infty;-2)\) | |
\((-2;+\infty)\) | |
\((2;+\infty)\) | |
\((-\infty;+\infty)\) |
Có bao nhiêu giá trị nguyên dương của tham số $m$ để hàm số $y=\dfrac{3}{4}x^4-(m-1)x^2-\dfrac{1}{4x^4}$ đồng biến trên khoảng $(0;+\infty)$?
$4$ | |
$2$ | |
$1$ | |
$3$ |
Hàm số $y=x^3-6x^2+1$ nghịch biến trên khoảng
$(-1;+\infty)$ | |
$(1;5)$ | |
$(-\infty;1)$ | |
$(0;4)$ |
Cho hàm số $y=f(x)$ là hàm đa thức bậc ba và có đồ thị như hình vẽ.
Khẳng định nào sau đây là sai?
Hàm số đồng biến trên $(1;+\infty)$ | |
Hàm số đồng biến trên $(-\infty;-1)\cup(1;+\infty)$ | |
Hàm số đồng biến trên $(-\infty;-1)$ | |
Hàm số nghịch biến trên $(-1;1)$ |
Cho hàm số $y=f(x)$ có đồ thị như hình vẽ.
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
$(-1;1)$ | |
$(-2;0)$ | |
$(-2;-1)$ | |
$(0;2)$ |
Có tât cả bao nhiêu giá trị nguyên của tham số $m$ để hàm số $y=\dfrac{1}{3}x^3-mx^2+9x-1$ đồng biến trên $\mathbb{R}$?
$8$ | |
$9$ | |
$7$ | |
$6$ |
Hàm số nào dưới đây nghịch biến trên $\mathbb{R}$?
$y=\mathrm{e}^x$ | |
$y=\big(\sqrt{2}\big)^x$ | |
$y=\left(\dfrac{4}{3}\right)^x$ | |
$y=\left(\dfrac{1}{3}\right)^x$ |
Cho hàm số $f(x)$ có bảng xét dấu của đạo hàm như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng dưới đây?
$(-\infty;2)$ | |
$(-\infty;-1)$ | |
$(-1;2)$ | |
$(-1;+\infty)$ |
Hàm số nào dưới đây nghịch biến trên tập $\mathbb{R}$?
$y=3x^3-x$ | |
$y=-2x^4-x$ | |
$y=-2x^3+3$ | |
$y=-x^4+2$ |
Số giá trị nguyên của tham số $m$ để hàm số $y=x^3-(m+1)x^2+3x+1$ đồng biến trên $\mathbb{R}$ là
$4$ | |
$6$ | |
$5$ | |
$7$ |
Cho hàm số $y=f(x)$ có $f'(x)$ liên tục trên $\mathbb{R}$ và đồ thị $f'(x)$ như hình bên.
Hàm số đã cho nghịch biến trên khoảng nào sau đây?
$(-\infty;0)$ | |
$(-1;1)$ | |
$(1;4)$ | |
$(1;+\infty)$ |
Cho hàm số $f(x)=ax^3+bx^2+cx+d$ ($a\neq0$) có đồ thị là đường cong trong hình bên dưới.
Hàm số đã cho đồng biến trên khoảng nào sau đây?
$(2;+\infty)$ | |
$(-2;2)$ | |
$(0;2)$ | |
$(-\infty;2)$ |
Cho hàm số $y=f(x)$ có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
$(-\infty;1)$ | |
$(0;1)$ | |
$(-1;0)$ | |
$(-2;+\infty)$ |
Cho hàm số $y=f(x)$ xác thực trên tập số thực $\mathbb{R}$ và có đồ thị $f'(x)$ như hình vẽ.
Đặt $g(x)=f(x)-x$, hàm số $g(x)$ nghịch biến trên khoảng
$(1;+\infty)$ | |
$(-1;2)$ | |
$(2;+\infty)$ | |
$(-\infty;-1)$ |
Cho hàm số $y=f(x)$ có đạo hàm $f'(x)=x(x-4)$, $\forall x\in\mathbb{R}$. Khẳng định nào dưới đây đúng?
$f(4)>f(0)$ | |
$f(0)>f(2)$ | |
$f(5)>f(6)$ | |
$f(4)>f(2)$ |
Hàm số nào dưới đây có bảng biến thiên như sau?
$y=\dfrac{x+2}{x}$ | |
$y=-x^3+3x+1$ | |
$y=x^4-3x^2$ | |
$y=-2x^2+1$ |
Cho hàm số $y=f(x)$ có bảng xét dấu đạo hàm như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
$(-\infty;0)$ | |
$(2;+\infty)$ | |
$(0;+\infty)$ | |
$(-1;2)$ |
Có bao nhiêu giá trị nguyên của tham số a thuộc đoạn $[-10;10]$ để hàm số $$y=\big|-x^3+3(a+1)x^2-3a(a+2)x+a^2(a+3)\big|$$đồng biến trên khoảng $(0;1)$
$21$ | |
$10$ | |
$8$ | |
$2$ |