Tính tổng các nghiệm thuộc $\left[-2\pi;2\pi\right]$ của phương trình $\sin^2x+\cos2x+2\cos x=0$.
$2\pi$ | |
$\dfrac{2\pi}{3}$ | |
$\dfrac{\pi}{3}$ | |
$0$ |
Tính tổng các nghiệm của phương trình $2\cos^2x+5\sin x-4=0$ trong $[0;2\pi]$.
$0$ | |
$\dfrac{8\pi}{3}$ | |
$\pi$ | |
$\dfrac{5\pi}{6}$ |
Tổng các nghiệm của phương trình $\sin^22x+\cos^23x=1$ trên khoảng $0< x<\pi$ là
$0$ | |
$\dfrac{\pi}{5}$ | |
$\pi$ | |
$2\pi$ |
Phương trình $3\cos x+\cos2x-\cos3x+1=2\sin x\sin2x$ có $\alpha$ là nghiệm lớn nhất thuộc khoảng $(0;2\pi)$. Tìm $\sin2\alpha$.
$\dfrac{1}{2}$ | |
$1$ | |
$-\dfrac{1}{2}$ | |
$0$ |
Số nghiệm của phương trình lượng giác $2\cos^2x-3\cos x+1=0$ thỏa mãn điều kiện $0\le x<\pi$ là
$2$ | |
$3$ | |
$4$ | |
$1$ |
Phương trình $\sqrt{3}\sin2x-2\cos^2x=0$ có tập nghiệm được biểu diễn bởi bao nhiêu điểm trên đường tròn lượng giác?
$3$ | |
$2$ | |
$6$ | |
$4$ |
Tập nghiệm của phương trình $\cos2x-\sin x=0$ được biểu diễn bởi tất cả bao nhiêu điểm trên đường tròn lượng giác?
1 điểm | |
2 điểm | |
3 điểm | |
4 điểm |
Tập nghiệm của phương trình $\cos2x-\sin x=0$ được biểu diễn bởi tất cả bao nhiêu điểm trên đường tròn lượng giác?
1 điểm | |
2 điểm | |
3 điểm | |
4 điểm |
Phương trình $\left(2\sin x+1\right)\left(4\cos4x+2\sin x\right)+4\cos^2x=3$ tương đương với phương trình nào trong các phương trình được cho dưới đây?
$\left(4\cos x-1\right)\left(2\sin x+1\right)=0$ | |
$\left(4\cos4x-1\right)\left(2\sin x+1\right)=0$ | |
$\left(4\cos x+1\right)\left(2\sin x+1\right)=0$ | |
$\left(4\cos4x+1\right)\left(2\sin x+1\right)=0$ |
Số nghiệm của phương trình $\sqrt{2}\cos\left(x+\dfrac{\pi}{3}\right)=1$ với $0\le x\le2\pi$ là
$3$ | |
$2$ | |
$1$ | |
$4$ |
Nghiệm của phương trình lượng giác $\cos^2x-\cos x=0$ thỏa điều kiện $0< x<\pi$ là
$x=-\dfrac{\pi}{2}$ | |
$x=\pi$ | |
$x=0$ | |
$x=\dfrac{\pi}{2}$ |
Tổng các nghiệm của phương trình $\cos\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{2}$ trong khoảng $(-\pi;\pi)$ là
$-\dfrac{\pi}{2}$ | |
$\dfrac{\pi}{4}$ | |
$\dfrac{\pi}{2}$ | |
$-\dfrac{3\pi}{2}$ |
Số nghiệm của phương trình $\sin2x-\sin x=0$ trên $\left[-2\pi;2\pi\right]$ là
$2$ | |
$9$ | |
$8$ | |
$4$ |
Họ nghiệm nào dưới đây là nghiệm của phương trình $8\cos^22x+2\cos2x-3=0$?
$x=\pm\dfrac{2\pi}{3}+k\pi$ | |
$x=\pm\dfrac{\pi}{3}+k\pi$ | |
$x=\pm\dfrac{\pi}{6}+k\pi$ | |
$x=\pm\dfrac{\pi}{6}+k2\pi$ |
Cho phương trình $\cos2x+\cos x=2$. Khi đặt $t=\cos x$, phương trình đã cho trở thành phương trình nào dưới đây?
$2t^2-t-1=0$ | |
$2t^2+t-3=0$ | |
$2t^2+t-1=0$ | |
$2t^2-t-3=0$ |
Có bao nhiêu giá trị nguyên của tham số \(m\) thuộc khoảng \((-6;5)\) sao cho phương trình $$2\cos2x+4\sin x-m\sqrt{2}=0$$vô nghiệm?
\(3\) | |
\(2\) | |
\(4\) | |
\(5\) |
Có bao nhiêu giá trị nguyên của tham số \(m\) để phương trình \(\cos x=m+1\) có nghiệm?
\(1\) | |
\(2\) | |
\(3\) | |
Vô số |
Nghiệm của phương trình $\cos x=\dfrac{\sqrt{2}}{2}$ là
$x=\pm\dfrac{\pi}{4}+k2\pi,\,k\in\mathbb{Z}$ | |
$x=\pm\dfrac{\pi}{6}+k2\pi,\,k\in\mathbb{Z}$ | |
$x=\pm\dfrac{\pi}{3}+k2\pi,\,k\in\mathbb{Z}$ | |
$x=\pm\dfrac{\pi}{3}+k\pi,\,k\in\mathbb{Z}$ |
Tìm nghiệm của phương trình $\cos x=1$.
$x=\dfrac{\pi}{2}+k\pi\,(k\in\mathbb{Z})$ | |
$x=k2\pi\,(k\in\mathbb{Z})$ | |
$x=k\pi\,(k\in\mathbb{Z})$ | |
$x=\pi+k\pi\,(k\in\mathbb{Z})$ |
Số nghiệm của phương trình $\sin x-\sqrt{3}\cos x=2$ trong khoảng $(0;5\pi)$ là
$3$ | |
$4$ | |
$2$ | |
$1$ |