Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(2;1)$, $B(-1;2)$, $C(3;0)$. Tứ giác $ABCD$ là hình bình hành khi tọa độ đỉnh $D$ là cặp số nào dưới đây?
![]() | $(0;-1)$ |
![]() | $(6;-1)$ |
![]() | $(1;6)$ |
![]() | $(-6;1)$ |
Trong mặt phẳng $Oxy$, cho tam giác $ABC$ với $A\left(-2;0\right)$, $B\left(5;-4\right)$, $C\left(-5;1\right)$. Tìm tọa độ điểm $D$ để tứ giác $BCAD$ là hình bình hành.
![]() | $D\left(-12;5\right)$ |
![]() | $D\left(8;5\right)$ |
![]() | $D\left(-8;5\right)$ |
![]() | $D\left(8;-5\right)$ |
Trong mặt phẳng $Oxy$, cho tam giác $ABC$ với $A(3;1)$, $B(4;2)$ và $C(4;-3)$. Tìm tọa độ điểm $D$ để tứ giác $ABCD$ là hình bình hành.
![]() | $D(-3;4)$ |
![]() | $D(-3;-4)$ |
![]() | $D(3;-4)$ |
![]() | $D(3;4)$ |
Trong mặt phẳng $Oxy$, cho hình bình hành $ABCD$ có $A(1;-2)$, $B(-5;3)$ và $G\left(\dfrac{2}{3};1\right)$ là trọng tâm tam giác $ABC$. Tìm tọa độ đỉnh $D$.
![]() | $D(3;-10)$ |
![]() | $D(10;-4)$ |
![]() | $D(10;-3)$ |
![]() | $D(12;-3)$ |
Cho hình bình hành \(ABCD\) biết \(A(1;2)\), \(B(4;5)\) và \(D(3;-1)\). Tìm tọa độ điểm \(C\).
![]() | \(C(2;8)\) |
![]() | \(C(6;2)\) |
![]() | \(C(0;-4)\) |
![]() | \(C\left(\dfrac{8}{3};2\right)\) |
Gọi $z_1,\,z_2$ là hai nghiệm phức của phương trình $z^2-6z+14=0$ và $M,\,N$ lần lượt là điểm biểu diễn của $z_1,\,z_2$ trên mặt phẳng tọa độ. Trung điểm của đoạn $MN$ có tọa độ là
![]() | $(3;7)$ |
![]() | $(-3;0)$ |
![]() | $(3;0)$ |
![]() | $(-3;7)$ |
Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là
![]() | $\left(-1;-\dfrac{2}{3}\right)$ |
![]() | $\left(-1;\dfrac{2}{3}\right)$ |
![]() | $\left(1;-\dfrac{2}{3}\right)$ |
![]() | $\left(1;\dfrac{2}{3}\right)$ |
Cho $z_1=5+3i$, $z_2=-8+9i$. Tọa độ điểm biểu diễn hình học của $z=z_1+z_2$ là
![]() | $P(3;-12)$ |
![]() | $Q(3;12)$ |
![]() | $M(14;-5)$ |
![]() | $N(-3;12)$ |
Trên mặt phẳng tọa độ, điểm biểu diễn số phức $z=2-7i$ có tọa độ là
![]() | $(2;7)$ |
![]() | $(-2;7)$ |
![]() | $(2;-7)$ |
![]() | $(-7;2)$ |
Trong mặt phẳng $Oxy$, phép quay tâm $O$ góc quay $-90^\circ$ biến $M(-3;5)$ thành điểm có tọa độ
![]() | $(-5;-3)$ |
![]() | $(5;-3)$ |
![]() | $(5;3)$ |
![]() | $(-5;3)$ |
Trong mặt phẳng $Oxy$, cho điểm $A(1;0)$. Ảnh của $A$ qua phép quay tâm $O$ góc quay $90^\circ$ là
![]() | $A’(0;-1)$ |
![]() | $A’(-1;0)$ |
![]() | $A’(0;1)$ |
![]() | $A’(1;1)$ |
Trong mặt phẳng $Oxy$, cho điểm $M(1;-3)$. Ảnh của điểm M qua phép tịnh tiến theo vectơ $\overrightarrow{v}=(1;-2)$ là
![]() | $M’(2;5)$ |
![]() | $M’(2;-5)$ |
![]() | $M’(0;-1)$ |
![]() | $M’(0;-5)$ |
Trong mặt phẳng $Oxy$, cho tam giác $PQR$ có $P(-3;2)$, $Q(1;1)$, $R(2;-4)$. Gọi $P',\,Q',\,R'$ lần lượt là ảnh của $P,\,Q,\,R$ qua phép vị tự tâm $O$ tỉ số $k=-\dfrac{1}{3}$. Khi đó tọa độ trọng tâm của tam giác $P'Q'R'$ là
![]() | $\left(\dfrac{1}{9};\dfrac{1}{3}\right)$ |
![]() | $\left(0;\dfrac{1}{9}\right)$ |
![]() | $\left(\dfrac{2}{3};-\dfrac{1}{3}\right)$ |
![]() | $\left(\dfrac{2}{9};0\right)$ |
Trong mặt phẳng $Oxy$, tìm ảnh $A'$ của điểm $A(1;2)$ qua phép vị tự tâm $I(3;-1)$ tỉ số $k=2$.
![]() | $A'(3;4)$ |
![]() | $A'(1;5)$ |
![]() | $A'(-5;-1)$ |
![]() | $A'(-1;5)$ |
Trong mặt phẳng $Oxy$, tìm ảnh $A'$ của điểm $A(1;-3)$ qua phép vị tự tâm $O$ tỉ số $-2$.
![]() | $A'(2;6)$ |
![]() | $A'(1;3)$ |
![]() | $A'(-2;6)$ |
![]() | $A'(-2;-6)$ |
Trong mặt phẳng $Oxy$, điểm $M'(3;-2)$ là ảnh của điểm nào sau đây qua phép quay $Q_{(O,180^\circ)}$?
![]() | $M(3;2)$ |
![]() | $M(2;3)$ |
![]() | $M(-3;2)$ |
![]() | $M(-2;-3)$ |
Trong mặt phẳng $Oxy$, cho các điểm $I(3;1)$ và $J(-1;-1)$. Tìm ảnh của $J$ qua phép quay $\mathrm{Q}_{(I,-90^\circ)}$.
![]() | $J'(-3;3)$ |
![]() | $J'(1;-5)$ |
![]() | $J'(1;5)$ |
![]() | $J'(5;-3)$ |
Trong mặt phẳng $Oxy$, cho điểm $M(2;2)$. Trong bốn điểm sau, điểm nào là ảnh của $M$ qua phép quay tâm $O$ góc $-45^\circ$?
![]() | $M'\left(2;-2\sqrt{2}\right)$ |
![]() | $M'\left(2\sqrt{2};2\right)$ |
![]() | $M'\left(0;2\sqrt{2}\right)$ |
![]() | $M'\left(2\sqrt{2};0\right)$ |
Trong mặt phẳng $Oxy$, ảnh của điểm $M(3;4)$ qua phép quay $\mathrm{Q}_{(O,45^\circ)}$ là
![]() | $M'\left(\dfrac{7\sqrt{2}}{2};\dfrac{7\sqrt{2}}{2}\right)$ |
![]() | $M'\left(-\dfrac{\sqrt{2}}{2};\dfrac{7\sqrt{2}}{2}\right)$ |
![]() | $M'\left(-\dfrac{\sqrt{2}}{2};-\dfrac{\sqrt{2}}{2}\right)$ |
![]() | $M'\left(\dfrac{7\sqrt{2}}{2};-\dfrac{\sqrt{2}}{2}\right)$ |
Trong mặt phẳng $Oxy$, cho điểm $B(-3;6)$. Tìm tọa độ điểm $E$ sao cho $B$ là ảnh của điểm $E$ qua phép quay tâm $O$ góc $-90^\circ$.
![]() | $E(6;3)$ |
![]() | $E(-3;-6)$ |
![]() | $E(-6;-3)$ |
![]() | $E(3;6)$ |