Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{a}=(0;1)$, $\overrightarrow{b}=(-1;2)$, $\overrightarrow{c}=(-3;-2)$. Tọa độ của vectơ $\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}$ là
$(10;-15)$ | |
$(15;10)$ | |
$(10;15)$ | |
$(-10;15)$ |
Trong mặt phẳng $Oxy$, cho hai vectơ $\overrightarrow{a}=(2;-4)$, $\overrightarrow{b}=(-5;3)$. Tìm tọa độ của vectơ $\overrightarrow{x}=2\overrightarrow{a}-\overrightarrow{b}$.
$\overrightarrow{x}=(7;-7)$ | |
$\overrightarrow{x}=(9;5)$ | |
$\overrightarrow{x}=(9;-11)$ | |
$\overrightarrow{x}=(-1;5)$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{u}=(3;-2)$, $\overrightarrow{v}=(7;4)$. Tìm tọa độ của $\overrightarrow{x}=3\overrightarrow{u}-4\overrightarrow{v}$.
$\overrightarrow{x}=(19;22)$ | |
$\overrightarrow{x}=(-19;-22)$ | |
$\overrightarrow{x}=(-19;22)$ | |
$\overrightarrow{x}=(19;-22)$ |
Trong mặt phẳng tọa độ \(Oxy\), cho hai vectơ \(\vec{u}=(-1;2)\) và \(\vec{v}=(3;-2)\). Tính tọa độ của vectơ \(2\vec{u}-3\vec{v}\).
\((11;-10)\) | |
\((9;-10)\) | |
\((-11;-2)\) | |
\((-11;10)\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(2;-4)\) và \(\vec{b}=(-5;3)\). Tìm tọa độ vectơ $\vec{u}=2\vec{a}-\vec{b}$.
\(\vec{u}=(7;-7)\) | |
\(\vec{u}=(9;-11)\) | |
\(\vec{u}=(9;-5)\) | |
\(\vec{u}=(-1;5)\) |
Trong mặt phẳng $Oxy$, cho các điểm $A(1;3)$, $B(4;0)$, $C(2;-5)$. Tọa độ điểm $M$ thỏa mãn $\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\overrightarrow{0}$ là
$M\left(1;18\right)$ | |
$M\left(-1;18\right)$ | |
$M\left(1;-18\right)$ | |
$M\left(-18;1\right)$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{a}=(3;-4)$, $\overrightarrow{b}=(-1;2)$. Tọa độ của $\overrightarrow{a}+\overrightarrow{b}$ là
$(-4;6)$ | |
$(2;-2)$ | |
$(4;-6)$ | |
$(-3;-8)$ |
Trong mặt phẳng $Oxy$, cho hai vectơ $\overrightarrow{a}=\left(3;-4\right)$ và $\overrightarrow{b}=\left(1;-2\right)$. Tìm tọa độ của vectơ $\overrightarrow{a}+\overrightarrow{b}$.
$\left(2;-2\right)$ | |
$\left(4;-6\right)$ | |
$\left(4;6\right)$ | |
$\left(-4;6\right)$ |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(-1;1)\), \(B(1;3)\), \(C(-2;0)\). Khẳng định nào sau đây sai?
\(\overrightarrow{AB}=2\overrightarrow{AC}\) | |
\(A,\,B,\,C\) thẳng hàng | |
\(\overrightarrow{BA}=\dfrac{2}{3}\overrightarrow{BC}\) | |
\(\overrightarrow{BA}+2\overrightarrow{CA}=\vec{0}\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-5;0)\) và \(\vec{b}=(4;m)\). Tìm \(m\) để \(\vec{a},\,\vec{b}\) cùng phương.
\(m=-5\) | |
\(m=4\) | |
\(m=0\) | |
\(m=-1\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=(3;-2)\) và \(\vec{v}=(1;6)\). Khẳng định nào sau đây là đúng?
\(\vec{u}+\vec{v}\) và \(\vec{a}=(-4;4)\) ngược hướng | |
\(\vec{u},\,\vec{v}\) cùng phương | |
\(\vec{u}-\vec{v}\) và \(\vec{b}=(6;-24)\) cùng hướng | |
\(2\vec{u}+\vec{v}\) và \(\vec{v}\) cùng phương |
Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(P(4;5)\) và \(S(3;-1)\). Tìm tọa độ điểm \(H\) thỏa mãn $$\overrightarrow{OH}=2\overrightarrow{OP}-3\overrightarrow{OS}.$$
\(H(-1;13)\) | |
\(H(-1;7)\) | |
\(H(-6;-17)\) | |
\(H(1;-13)\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(1;3)\), \(B(-1;2)\) và \(C(-2;1)\). Tìm tọa độ vectơ \(\overrightarrow{AB}-\overrightarrow{AC}\).
\(\overrightarrow{AB}-\overrightarrow{AC}=(-5;-3)\) | |
\(\overrightarrow{AB}-\overrightarrow{AC}=(1;1)\) | |
\(\overrightarrow{AB}-\overrightarrow{AC}=(-1;2)\) | |
\(\overrightarrow{AB}-\overrightarrow{AC}=(-1;1)\) |
Trong mặt phẳng \(Oxy\), tọa độ của vectơ \(\vec{i}+\vec{j}\) là
\((0;1)\) | |
\((1;-1)\) | |
\((-1;1)\) | |
\((1;1)\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-1;2)\) và \(\vec{b}=(5;-7)\). Tìm tọa độ vectơ $\vec{w}=\vec{a}-\vec{b}$.
\(\vec{w}=(6;-9)\) | |
\(\vec{w}=(4;-5)\) | |
\(\vec{w}=(-6;9)\) | |
\(\vec{w}=(-5;-14)\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(3;-4)\) và \(\vec{b}=(-1;2)\). Tìm tọa độ vectơ $\vec{v}=\vec{a}+\vec{b}$.
\(\vec{v}=(-4;6)\) | |
\(\vec{v}=(2;-2)\) | |
\(\vec{v}=(4;-6)\) | |
\(\vec{v}=(-3;-8)\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(1;-3)\) và \(\vec{b}=(2;5)\). Tính \(\vec{a}\left(\vec{a}+2\vec{b}\right)\).
\(26\) | |
\(-16\) | |
\(16\) | |
\(36\) |
Trong không gian \(Oxyz\), cho \(\vec{a}=(2;1;3)\), \(\vec{b}=(4;-3;5)\), \(\vec{c}=(-2;4;6)\). Tìm tọa độ của vectơ \(\vec{u}=\vec{a}+2\vec{b}-\vec{c}\).
\((10;9;6)\) | |
\((12;-9;7)\) | |
\((10;-9;6)\) | |
\((12;-9;6)\) |
Trong không gian \(Oxyz\), cho \(\vec{a}=(2;-3;3)\), \(\vec{b}=(0;2;-1)\), \(\vec{c}=(3;-1;5)\). Tìm tọa độ của vectơ \(\vec{u}=2\vec{a}+3\vec{b}-2\vec{c}\).
\((10;-2;13)\) | |
\((-2;2;-7)\) | |
\((-2;-2;7)\) | |
\((-2;2;7)\) |
Trong không gian \(Oxyz\) cho hai vectơ \(\vec{x}=(2;1;-3)\) và \(\vec{y}=(1;0;-1)\). Tìm tọa độ của vectơ \(\vec{a}=\vec{x}+2\vec{y}\).
\(\vec{a}=(4;1;-1)\) | |
\(\vec{a}=(3;1;-4)\) | |
\(\vec{a}=(0;1;-1)\) | |
\(\vec{a}=(4;1;-5)\) |