Ngân hàng bài tập

Bài tập tương tự

A

Trong không gian $Oxyz$ cho điểm $P(2;-3;1)$. Gọi $A$, $B$, $C$ lần lượt là hình chiếu vuông góc của điểm $P$ trên ba trục tọa độ $Ox$, $Oy$ và $Oz$. Phương trình mặt phẳng đi qua ba điểm $A$, $B$, $C$ là

$\dfrac{x}{2}+\dfrac{y}{3}+\dfrac{z}{1}=1$
$2x-3y+z=1$
$3x-2y+6z=1$
$3x-2y+6z-6=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
B

Trong không \(Oxyz\), gọi \(A,\,B,\,C\) lần lượt là hình chiếu vuông góc của điểm \(M(1;2;3)\) lên các trục tọa độ. Mặt phẳng \((ABC)\) có phương trình là

\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1\)
\(\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{3}=1\)
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\)
\(\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{3}=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho điểm $A(2;-1;1)$. Phương trình mặt phẳng $\left(\alpha\right)$ qua các hình chiếu của điểm $A$ trên các trục tọa độ là

$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=-1$
$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=0$
$\dfrac{x}{2}+\dfrac{y}{-1}+\dfrac{z}{1}=1$
$\dfrac{x}{2}+\dfrac{y}{1}+\dfrac{z}{1}=1$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho điểm \(G(2;1;1)\). Gọi \((P)\) là mặt phẳng đi qua điểm \(G\) và cắt các trục \(Ox,\,Oy,\,Oz\) lần lượt tại \(A,\,B,\,C\) sao cho \(G\) là trọng tâm tam giác \(ABC\). Phương trình mặt phẳng \((P)\) là

\(x+2y+2z-12=0\)
\(x+2y+2z+6=0\)
\(2x+y+z-6=0\)
\(x+2y+2z-6=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), gọi \((P)\) là mặt phẳng qua \(M(2;1;9)\) và cắt tia \(Ox,\,Oy,\,Oz\) lần lượt tại \(A,\,B,\,C\) sao cho tam giác \(ABC\) đều. Điểm nào dưới đây thuộc \((P)\)?

\(E(-1;5;8)\)
\(F(3;2;-7)\)
\(G(1;-7;-6)\)
\(H(5;5;5)\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho điểm \(G(1;2;3)\). Gọi \((P)\colon px+qy+rz+1=0\) (\(p,\,q,\,r\in\Bbb{R}\)) là mặt phẳng qua \(G\) và cắt các trục \(Ox,\,Oy,\,Oz\) tại \(A,\,B,\,C\) sao cho \(G\) là trọng tâm của tam giác \(ABC\). Tính \(T=p+q+r\).

\(T=-\dfrac{11}{18}\)
\(T=\dfrac{11}{18}\)
\(T=18\)
\(T=-18\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho mặt phẳng \((P)\) chứa điểm \(H(1;2;2)\) và cắt các trục \(Ox\), \(Oy\), \(Oz\) lần lượt tại \(A,\,B,\,C\) sao cho \(H\) là trực tâm của tam giác \(ABC\). Phương trình mặt phẳng \((P)\) là

\(x+2y-2z-9=0\)
\(2x+y+z-6=0\)
\(2x+y+z-2=0\)
\(x+2y+2z-9=0\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho mặt phẳng $(P)$ chứa điểm $H(1;2;2)$ và cắt tia $Ox$, $Oy$, $Oz$ lần lượt tại $A,\,B,\,C$ sao cho $H$ là trực tâm của tam giác $ABC$. Phương trình mặt phẳng $(P)$ là

$2x+y+z-2=0$
$x+2y-2z-9=0$
$x+2y+2z-9=0$
$2x+y+z-6=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho bốn điểm \(A(2;0;0)\), \(B(0;4;0)\), \(C(0;0;6)\) và \(D(2;4;6)\). Gọi \((P)\) là mặt phẳng song song với mặt phẳng \((ABC)\) đồng thời cách đều điểm \(D\) và mặt phẳng \((ABC)\). Phương trình của \((P)\) là

\(6x+3y+2z-24=0\)
\(6x+3y+2z-12=0\)
\(6x+3y+2z=0\)
\(6x+3y+2z-36=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho điểm $A(1;2;-2)$. Gọi $(P)$ là mặt phẳng chứa trục $Ox$ sao cho khoảng cách từ $A$ đến $(P)$ lớn nhất. Phương trình của $(P)$ là

$2y+z=0$
$2y-z=0$
$y+z=0$
$y-z=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho mặt phẳng \(\left(P\right)\colon2x+2y-z-1=0\). Mặt phẳng nào sau đây song song với \(\left(P\right)\) và cách \(\left(P\right)\) một khoảng bằng \(3\)? 

\(\left(Q\right)\colon2x+2y-z+10=0\)
\(\left(Q\right)\colon2x+2y-z+4=0\)
\(\left(Q\right)\colon2x+2y-z+8=0\)
\(\left(Q\right)\colon2x+2y-z-8=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian với hệ tọa độ \(Oxyz\), cho \((\alpha)\) là mặt phẳng chứa trục \(Oy\) và cách \(A(1;3;5)\) một đoạn dài nhất. Phương trình mặt phẳng \((\alpha)\) là

\(x+5z-18\)
\(x+5z=0\)
\(3x+4z=0\)
\(x+5y=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho điểm \(A(4;-3;2)\). Hình chiếu vuông góc của \(A\) lên các trục tọa độ \(Ox,\,Oy,\,Oz\) lần lượt là \(M,\,N,\,P\). Phương trình mặt phẳng \((MNP)\) là

\(4x-3y+2z-5=0\)
\(3x-4y+6z-12=0\)
\(2x-3y+4z-1=0\)
\(\dfrac{x}{4}-\dfrac{y}{3}+\dfrac{z}{2}+1=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, khoảng cách từ điểm $M(1;2;3)$ đến mặt phẳng $(P)\colon x+2y+2z-5=0$ bằng

$\mathrm{d}\big(M,(P)\big)=2$
$\mathrm{d}\big(M,(P)\big)=4$
$\mathrm{d}\big(M,(P)\big)=1$
$\mathrm{d}\big(M,(P)\big)=3$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon ax+by+cz+d=0$ (với $abc>0$) đi qua hai điểm $A(1;0;0)$, $B(0;1;0)$. Biết $\mathrm{d}\big(O,(P)\big)=\dfrac{2}{3}$ và điểm $C(-3;1;0)$. Tính $\mathrm{d}\big(C,(P)\big)$.

$3$
$1$
$2$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho mặt cầu $(S)\colon(x+3)^2+y^2+(z-1)^2=10$. Mặt phẳng nào trong các mặt phẳng dưới đây cắt mặt cầu $(S)$ theo giao tuyến là đường tròn có bán kính bằng $3$?

$\big(P_2\big)\colon x+2y-2z-8=0$
$\big(P_4\big)\colon x+2y-2z-4=0$
$\big(P_3\big)\colon x+2y-2z-2=0$
$\big(P_1\big)\colon x+2y-2z+8=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian $Oxyz$, cho điểm $A(0;1;2)$ và đường thẳng $d\colon\dfrac{x-2}{2}=\dfrac{y-1}{2}=\dfrac{z-1}{-3}$. Gọi $(P)$ là mặt phẳng đi qua $A$ và chứa $d$. Khoảng cách từ điểm $M(5;-1;3)$ đến $(P)$ bằng

$5$
$\dfrac{1}{3}$
$1$
$\dfrac{11}{3}$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, viết phương trình mặt phẳng $(P)$ đi qua điểm $G(1;2;3)$ và cắt ba trục $Ox,\,Oy,\,Oz$ lần lượt tại $A,\,B,\,C$ sao cho $G$ là trọng tâm tam giác $ABC$.

$x+2y+3z-14=0$
$\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{3}=1$
$\dfrac{x}{3}+\dfrac{y}{6}+\dfrac{z}{9}=1$
$\dfrac{x}{6}+\dfrac{y}{3}+\dfrac{z}{9}=1$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
C

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon x+2y-2z-11=0$ và điểm $M(-1;0;0)$. Khoảng cách từ điềm $M$ đến mặt phẳng $(P)$ bằng

$3\sqrt{3}$
$36$
$12$
$4$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, gọi mặt phẳng $(P)\colon7x+by+cz+d=0$ (với $b,\,c,\,d\in\mathbb{R}$, $c< 0$) đi qua điểm $A(1;3;5)$. Biết mặt phẳng $(P)$ song song với trục $Oy$ và khoảng cách từ gốc tọa độ đến mặt phẳng $(P)$ bằng $3\sqrt{2}$. Tính $T=b+c+d$.

$T=61$
$T=78$
$T=7$
$T=-4$
1 lời giải Sàng Khôn
Lời giải Tương tự