Gọi $A,\,B,\,C$ là điểm biểu diễn cho các số phức $z_1=-2+3i$, $z_2=-4-2i$, $z_3=3+i$. Khi đó tọa độ trọng tâm $G$ của tam giác $ABC$ là
$\left(-1;-\dfrac{2}{3}\right)$ | |
$\left(-1;\dfrac{2}{3}\right)$ | |
$\left(1;-\dfrac{2}{3}\right)$ | |
$\left(1;\dfrac{2}{3}\right)$ |
Trong mặt phẳng $Oxy$, cho tam giác $PQR$ có $P(-3;2)$, $Q(1;1)$, $R(2;-4)$. Gọi $P',\,Q',\,R'$ lần lượt là ảnh của $P,\,Q,\,R$ qua phép vị tự tâm $O$ tỉ số $k=-\dfrac{1}{3}$. Khi đó tọa độ trọng tâm của tam giác $P'Q'R'$ là
$\left(\dfrac{1}{9};\dfrac{1}{3}\right)$ | |
$\left(0;\dfrac{1}{9}\right)$ | |
$\left(\dfrac{2}{3};-\dfrac{1}{3}\right)$ | |
$\left(\dfrac{2}{9};0\right)$ |
Trong mặt phẳng $Oxy$, cho tam giác $MNP$ có $M(-2;1)$, $N(1;3)$, $P(0;2)$. Tọa độ trọng tâm $G$ của tam giác $MNP$ là
$(2;1)$ | |
$\left(2;\dfrac{-1}{3}\right)$ | |
$\left(-\dfrac{1}{3};2\right)$ | |
$(1;2)$ |
Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có trọng tâm là gốc tọa độ $O$ hai đỉnh $A\left(-2;2\right)$ và $B\left(3;5\right)$. Tọa độ đỉnh $C$ là
$\left(-1;-7\right)$ | |
$\left(2;-2\right)$ | |
$\left(-3;-5\right)$ | |
$\left(1;7\right)$ |
Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A\left(-1;3\right)$, $B\left(2;3\right)$, $C\left(5;-3\right)$. Tọa độ trọng tâm $G$ của tam giác $ABC$ là
$\left(2;1\right)$ | |
$\left(2;3\right)$ | |
$\left(\dfrac{1}{2};0\right)$ | |
$\left(-\dfrac{8}{3};1\right)$ |
Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $M\left(-\dfrac{5}{2};-1\right)$, $N\left(-\dfrac{3}{2};-\dfrac{7}{2}\right)$, $P\left(0;\dfrac{1}{2}\right)$ lần lượt là trung điểm các cạnh $BC$, $CA$ và $AB$. Tìm tọa độ trọng tâm $G$ của tam giác $ABC$.
$G\left(-\dfrac{4}{3};-\dfrac{4}{3}\right)$ | |
$G(-4;-4)$ | |
$G\left(\dfrac{4}{3};-\dfrac{4}{3}\right)$ | |
$G(4;-4)$ |
Cho $A(3;3)$, $B(5;5)$, $C(6,9)$. Tìm tọa độ trọng tâm của tam giác $ABC$.
$\left(14;17\right)$ | |
$\left(\dfrac{14}{3};5\right)$ | |
$\left(\dfrac{14}{3};\dfrac{17}{3}\right)$ | |
$\left(4;5\right)$ |
Trong mặt phẳng $Oxy$, cho $A(1;2)$, $B(-2;4)$, $C(x;y)$ và $G(-2;2)$. Biết $G$ là trọng tâm tam giác $ABC$. Tìm tọa độ điểm $C$.
$C(-5;0)$ | |
$C(5;0)$ | |
$C(3;1)$ | |
$C(0;-5)$ |
Tìm tọa độ trọng tâm \(G\) của tam giác \(ABC\) biết \(A(-1;3)\), \(B(1;-1)\) và \(C(3;7)\).
\(G(3;9)\) | |
\(G(1;3)\) | |
\(G\left(\dfrac{3}{2};\dfrac{9}{2}\right)\) | |
\(G(9;27)\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) có \(A(-2;2)\), \(B(3;5)\) và trọng tâm là gốc tọa độ \(O\). Tìm tọa độ đỉnh \(C\).
\(C(-1;-7)\) | |
\(C(2;-2)\) | |
\(C(-3;-5)\) | |
\(C(1;7)\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) có \(A(6;1)\), \(B(-3;5)\) và trọng tâm \(G(-1;1)\). Tìm tọa độ đỉnh \(C\).
\(C(6;-3)\) | |
\(C(-6;3)\) | |
\(C(-6;-3)\) | |
\(C(-3;6)\) |
Trong mặt phẳng \(Oxy\), cho tam giác \(ABC\) có \(A(3;5)\), \(B(1;2)\), \(C(5;2)\). Tìm tọa độ trọng tâm \(G\) của tam giác.
\(G(-3;-3)\) | |
\(G\left(\dfrac{9}{2};\dfrac{9}{2}\right)\) | |
\(G(9;9)\) | |
\(G(3;3)\) |
Trong mặt phẳng $Oxy$, cho $A(2;5)$, $B(1;3)$, $C(5;-1)$. Tọa độ trọng tâm $G$ của tam giác $ABC$ là
$G(8;7)$ | |
$G\left(\dfrac{8}{3};\dfrac{7}{3}\right)$ | |
$G\left(-\dfrac{8}{3};-\dfrac{7}{3}\right)$ | |
$G\left(-\dfrac{8}{3};\dfrac{7}{3}\right)$ |
Trong mặt phẳng $Oxy$, cho tam giác $ABC$ có $A(2;1)$, $B(-1;2)$, $C(3;0)$. Tứ giác $ABCD$ là hình bình hành khi tọa độ đỉnh $D$ là cặp số nào dưới đây?
$(0;-1)$ | |
$(6;-1)$ | |
$(1;6)$ | |
$(-6;1)$ |
Trong mặt phẳng $Oxy$, cho hai điểm $A(2;1)$ và $B(6;-1)$. Tìm tọa độ điểm $M$ nằm trên trục hoành sao cho $A$, $B$, $M$ thẳng hàng.
$M(4;0)$ | |
$M(3;0)$ | |
$M\left(\dfrac{1}{2};0\right)$ | |
$M(-1;0)$ |
Trong mặt phẳng $Oxy$ cho hai điểm $A(2;1)$, $B(-1;2)$. Xác định tọa độ điểm $C$ thuộc $Ox$ sao cho $A,\,B,\,C$ thẳng hàng.
$(0;5)$ | |
$(0;-1)$ | |
$(5;0)$ | |
$(-1;0)$ |
Trong mặt phẳng $Oxy$, cho hình bình hành $ABCD$ có $A(1;-2)$, $B(-5;3)$ và $G\left(\dfrac{2}{3};1\right)$ là trọng tâm tam giác $ABC$. Tìm tọa độ đỉnh $D$.
$D(3;-10)$ | |
$D(10;-4)$ | |
$D(10;-3)$ | |
$D(12;-3)$ |
Cho tam giác $ABC$. Biết trung điểm của các cạnh $BC$, $CA$, $AB$ có tọa độ lần lượt là $M(1;-1)$, $N(3;2)$, $P(0;-5)$. Khi đó tọa độ của điểm $A$ là
$(-2;2)$ | |
$(5;1)$ | |
$\left(\sqrt{5};0\right)$ | |
$\left(2;\sqrt{2}\right)$ |
Trong không gian $Oxyz$, cho các điểm $A(-1;2;3)$, $B(6;-5;8)$. Tìm tọa độ $M$ để gốc tọa độ $O$ là trọng tâm tam giác $MAB$.
$(7;-7;5)$ | |
$(5;-3;11)$ | |
$\left(\dfrac{5}{2};\dfrac{-3}{2};\dfrac{11}{2}\right)$ | |
$(-5;3;-11)$ |
Trong không gian $Oxyz$, cho hình hộp chữ nhật $OABC.O'A'B'C'$ có ba đỉnh $A,\,C,\,O'$ lần lượt nằm trên ba tia $Ox$, $Oy$, $Oz$ và có ba cạnh $OA=6$, $OC=8$, $OO'=5$ (tham khảo hình minh họa).
Điểm $B'$ có tọa độ là
$(8;6;5)$ | |
$(5;6;8)$ | |
$(6;5;8)$ | |
$(6;8;5)$ |