Ngân hàng bài tập

Bài tập tương tự

S

Trong không gian $Oxyz$ cho mặt phẳng $(\alpha)\colon2x+2y-z-6=0$. Gọi mặt phẳng $(\beta)\colon x+y+cz+d=0$ không qua $O$, song song với mặt phẳng $(\alpha)$ và $\mathrm{d}\left((\alpha),(\beta)\right)=2$. Tính $c\cdot d$?

$cd=3$
$cd=0$
$cd=12$
$cd=6$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho mặt phẳng \(\left(P\right)\colon2x+2y-z-1=0\). Mặt phẳng nào sau đây song song với \(\left(P\right)\) và cách \(\left(P\right)\) một khoảng bằng \(3\)? 

\(\left(Q\right)\colon2x+2y-z+10=0\)
\(\left(Q\right)\colon2x+2y-z+4=0\)
\(\left(Q\right)\colon2x+2y-z+8=0\)
\(\left(Q\right)\colon2x+2y-z-8=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), phương trình mặt cầu \((S)\) tiếp xúc với hai mặt phẳng song song \((P)\colon x-2y+2z+6=0\) và \((Q)\colon x-2y+2z-10=0\) có tâm \(I\) trên trục \(Oy\) là

\(x^2+y^2+z^2+2y-\dfrac{55}{9}=0\)
\(x^2+y^2+z^2+2y-60=0\)
\(x^2+y^2+z^2-2y+55=0\)
\(x^2+y^2+z^2-2y-\dfrac{55}{9}\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian $Oxyz$, khoảng cách giữa hai mặt phẳng $(P)\colon x+2y+2z+11=0$ và $(Q)\colon x+2y+2z+2=0$ bằng

$3$
$1$
$9$
$6$
1 lời giải Sàng Khôn
Lời giải Tương tự
A

Khoảng cách giữa mặt phẳng \((P)\colon2x-y+3z+5=0\) và \((Q)\colon2x-y+3z+1=0\) bằng

\(4\)
\(\dfrac{6}{\sqrt{14}}\)
\(6\)
\(\dfrac{4}{\sqrt{14}}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), cho hai mặt phẳng \((\alpha)\colon2x+3y-z+2=0\), \((\beta)\colon2x+3y-z+16=0\). Khoảng cách giữa hai mặt phẳng \((\alpha)\) và \((\beta)\) là

\(\sqrt{14}\)
\(15\)
\(0\)
\(\sqrt{23}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
A

Trong không gian \(Oxyz\), gọi \(A,\,B,\,C\) lần lượt là hình chiếu vuông góc của điểm \(M(1;-2;-2)\) lên các trục tọa độ \(Ox,\,Oy,\,Oz\). Khoảng cách từ gốc tọa độ \(O\) đến mặt phẳng \((ABC)\) bằng

\(\dfrac{\sqrt{6}}{3}\)
\(\dfrac{2\sqrt{3}}{3}\)
\(\dfrac{\sqrt{6}}{6}\)
\(\dfrac{\sqrt{3}}{2}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon2x-y-2z+1=0\) và \((Q)\colon2x-y-2z+6=0\). Khoảng cách giữa \((P)\) và \((Q)\) bằng

\(\dfrac{5}{3}\)
\(\dfrac{4}{3}\)
\(2\)
\(\dfrac{3}{5}\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $M(2;-1;3)$ và mặt phẳng $(P)\colon3x-2y+z+1=0$. Phương trình mặt phẳng đi qua $M$ và song song với $(P)$ là

$3x-2y+z-11=0$
$2x-y+3z-14=0$
$3x-2y+z+11=0$
$2x-y+3z+14=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon ax+by+cz+d=0$ (với $abc>0$) đi qua hai điểm $A(1;0;0)$, $B(0;1;0)$. Biết $\mathrm{d}\big(O,(P)\big)=\dfrac{2}{3}$ và điểm $C(-3;1;0)$. Tính $\mathrm{d}\big(C,(P)\big)$.

$3$
$1$
$2$
$0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho $I(2;1;1)$ và mặt phẳng $(P)\colon2x+y+2z+2=0$. Viết phương trình mặt phẳng qua điểm $I$ và song song với mặt phẳng $(P)$.

1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian $Oxyz$, cho điểm $A(1;2;-2)$. Gọi $(P)$ là mặt phẳng chứa trục $Ox$ sao cho khoảng cách từ $A$ đến $(P)$ lớn nhất. Phương trình của $(P)$ là

$2y+z=0$
$2y-z=0$
$y+z=0$
$y-z=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho mặt phẳng $(P)\colon x+y-2z-2=0$. Mặt phẳng $(Q)$ đi qua $A(1;2;-1)$ và song song với $(P)$ có phương trình là

$2x+2y-4z+1=0$
$x+y-2z-5=0$
$2x+y+z-3=0$
$x+y-2z-3=0$
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian $Oxyz$, cho điểm $A(2;4;1)$ và mặt phẳng $(P)\colon x-3y+2z-5=0$. Phương trình của mặt phẳng đi qua điểm $A$ và song song với mặt phẳng $(P)$ là

$2x+4y+z-8=0$
$x-3y+2z+8=0$
$x-3y+2z-8=0$
$2x+4y+z+8=0$
1 lời giải Sàng Khôn
Lời giải Tương tự
S

Trong không gian \(Oxyz\) cho mặt cầu \(\left(S\right)\colon x^2+y^2+z^2-6x+4y-2z+5=0\) và mặt phẳng \(\left(P\right)\colon x+2y+2z+11=0\). Tìm điểm \(M\) trên mặt cầu \(\left(S\right)\) sao cho khoảng cách từ \(M\) đến \(\left(P\right)\) là ngắn nhất.

\(M\left(0;0;1\right)\)
\(M\left(2;-4;-1\right)\)
\(M\left(4;0;3\right)\)
\(M\left(0;-1;0\right)\)
2 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian \(Oxyz\), mặt phẳng đi qua điểm \(A(2;-1;2)\) và song song với mặt phẳng \((P)\colon2x-y+3z+2=0\) có phương trình là

\(2x-y+3z+11=0\)
\(2x-y-3z+11=0\)
\(2x-y+3z-11=0\)
\(2x-y+3z-9=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Trong không gian với hệ tọa độ \(Oxyz\), phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm \(M(1;-2;0)\) và song song với mặt phẳng \((P)\colon x-y+3z-6=0\)?

\(x-y+3z-1=0\)
\(x-y+3z+1=0\)
\(x-y+3z-3=0\)
\(x-y+3z+3=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian với hệ tọa độ \(Oxyz\), cho \((\alpha)\) là mặt phẳng chứa trục \(Oy\) và cách \(A(1;3;5)\) một đoạn dài nhất. Phương trình mặt phẳng \((\alpha)\) là

\(x+5z-18\)
\(x+5z=0\)
\(3x+4z=0\)
\(x+5y=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
B

Gọi \((\alpha)\) là mặt phẳng đi qua điểm \(M(2;-1;2)\) và song song với mặt phẳng \((Q)\colon2x-y+3z+4=0\). Phương trình mặt phẳng \((\alpha)\) là

\(2x-y+2z-11=0\)
\(2x-y+3z+11=0\)
\(2x-y+3z-11=0\)
\(2x-y+3z-4=0\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự
S

Trong không gian \(Oxyz\), cho hai mặt phẳng \((P)\colon x-y-z+6=0\) và \((Q)\colon2x+3y-2z+1=0\). Gọi \((S)\) là mặt cầu có tâm thuộc \((Q)\) và cắt \((P)\) theo giao tuyến là đường tròn tâm \(E(-1;2;3)\), bán kính \(r=8\). Phương trình mặt cầu \((S)\) là

\(x^2+(y+1)^2+(z+2)^2=64\)
\(x^2+(y-1)^2+(z-2)^2=67\)
\(x^2+(y-1)^2+(z+2)^2=3\)
\(x^2+(y+1)^2+(z-2)^2=64\)
1 lời giải Huỳnh Phú Sĩ
Lời giải Tương tự