Trong mặt phẳng $Oxy$, cho các vectơ $\overrightarrow{a}=(0;1)$, $\overrightarrow{b}=(-1;2)$, $\overrightarrow{c}=(-3;-2)$. Tọa độ của vectơ $\overrightarrow{u}=3\overrightarrow{a}+2\overrightarrow{b}-4\overrightarrow{c}$ là
![]() | $(10;-15)$ |
![]() | $(15;10)$ |
![]() | $(10;15)$ |
![]() | $(-10;15)$ |
Cho $\overrightarrow{a}=\left(6;5\right)$, $\overrightarrow{b}=\left(3;-2\right)$. Tìm tọa độ $\overrightarrow{c}$ sao cho $2\overrightarrow{a}+3\overrightarrow{c}=\overrightarrow{b}$.
![]() | $\overrightarrow{c}=\left(-3;-4\right)$ |
![]() | $\overrightarrow{c}=\left(3;-4\right)$ |
![]() | $\overrightarrow{c}=\left(-2;-3\right)$ |
![]() | $\overrightarrow{c}=\left(-3;-2\right)$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{u}=(3;-2)$, $\overrightarrow{v}=(7;4)$. Tìm tọa độ của $\overrightarrow{x}=3\overrightarrow{u}-4\overrightarrow{v}$.
![]() | $\overrightarrow{x}=(19;22)$ |
![]() | $\overrightarrow{x}=(-19;-22)$ |
![]() | $\overrightarrow{x}=(-19;22)$ |
![]() | $\overrightarrow{x}=(19;-22)$ |
Trong mặt phẳng tọa độ \(Oxy\), cho hai vectơ \(\vec{u}=(-1;2)\) và \(\vec{v}=(3;-2)\). Tính tọa độ của vectơ \(2\vec{u}-3\vec{v}\).
![]() | \((11;-10)\) |
![]() | \((9;-10)\) |
![]() | \((-11;-2)\) |
![]() | \((-11;10)\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(2;-4)\) và \(\vec{b}=(-5;3)\). Tìm tọa độ vectơ $\vec{u}=2\vec{a}-\vec{b}$.
![]() | \(\vec{u}=(7;-7)\) |
![]() | \(\vec{u}=(9;-11)\) |
![]() | \(\vec{u}=(9;-5)\) |
![]() | \(\vec{u}=(-1;5)\) |
Trong mặt phẳng $Oxy$, cho các điểm $A(1;3)$, $B(4;0)$, $C(2;-5)$. Tọa độ điểm $M$ thỏa mãn $\overrightarrow{MA}+\overrightarrow{MB}-3\overrightarrow{MC}=\overrightarrow{0}$ là
![]() | $M\left(1;18\right)$ |
![]() | $M\left(-1;18\right)$ |
![]() | $M\left(1;-18\right)$ |
![]() | $M\left(-18;1\right)$ |
Trong mặt phẳng $Oxy$, cho $\overrightarrow{a}=(3;-4)$, $\overrightarrow{b}=(-1;2)$. Tọa độ của $\overrightarrow{a}+\overrightarrow{b}$ là
![]() | $(-4;6)$ |
![]() | $(2;-2)$ |
![]() | $(4;-6)$ |
![]() | $(-3;-8)$ |
Trong mặt phẳng $Oxy$, cho hai vectơ $\overrightarrow{a}=\left(3;-4\right)$ và $\overrightarrow{b}=\left(1;-2\right)$. Tìm tọa độ của vectơ $\overrightarrow{a}+\overrightarrow{b}$.
![]() | $\left(2;-2\right)$ |
![]() | $\left(4;-6\right)$ |
![]() | $\left(4;6\right)$ |
![]() | $\left(-4;6\right)$ |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(-1;1)\), \(B(1;3)\), \(C(-2;0)\). Khẳng định nào sau đây sai?
![]() | \(\overrightarrow{AB}=2\overrightarrow{AC}\) |
![]() | \(A,\,B,\,C\) thẳng hàng |
![]() | \(\overrightarrow{BA}=\dfrac{2}{3}\overrightarrow{BC}\) |
![]() | \(\overrightarrow{BA}+2\overrightarrow{CA}=\vec{0}\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-5;0)\) và \(\vec{b}=(4;m)\). Tìm \(m\) để \(\vec{a},\,\vec{b}\) cùng phương.
![]() | \(m=-5\) |
![]() | \(m=4\) |
![]() | \(m=0\) |
![]() | \(m=-1\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{u}=(3;-2)\) và \(\vec{v}=(1;6)\). Khẳng định nào sau đây là đúng?
![]() | \(\vec{u}+\vec{v}\) và \(\vec{a}=(-4;4)\) ngược hướng |
![]() | \(\vec{u},\,\vec{v}\) cùng phương |
![]() | \(\vec{u}-\vec{v}\) và \(\vec{b}=(6;-24)\) cùng hướng |
![]() | \(2\vec{u}+\vec{v}\) và \(\vec{v}\) cùng phương |
Trong mặt phẳng tọa độ \(Oxy\), cho điểm \(P(4;5)\) và \(S(3;-1)\). Tìm tọa độ điểm \(H\) thỏa mãn $$\overrightarrow{OH}=2\overrightarrow{OP}-3\overrightarrow{OS}.$$
![]() | \(H(-1;13)\) |
![]() | \(H(-1;7)\) |
![]() | \(H(-6;-17)\) |
![]() | \(H(1;-13)\) |
Trong mặt phẳng \(Oxy\), cho ba điểm \(A(1;3)\), \(B(-1;2)\) và \(C(-2;1)\). Tìm tọa độ vectơ \(\overrightarrow{AB}-\overrightarrow{AC}\).
![]() | \(\overrightarrow{AB}-\overrightarrow{AC}=(-5;-3)\) |
![]() | \(\overrightarrow{AB}-\overrightarrow{AC}=(1;1)\) |
![]() | \(\overrightarrow{AB}-\overrightarrow{AC}=(-1;2)\) |
![]() | \(\overrightarrow{AB}-\overrightarrow{AC}=(-1;1)\) |
Trong mặt phẳng \(Oxy\), tọa độ của vectơ \(\vec{i}+\vec{j}\) là
![]() | \((0;1)\) |
![]() | \((1;-1)\) |
![]() | \((-1;1)\) |
![]() | \((1;1)\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(-1;2)\) và \(\vec{b}=(5;-7)\). Tìm tọa độ vectơ $\vec{w}=\vec{a}-\vec{b}$.
![]() | \(\vec{w}=(6;-9)\) |
![]() | \(\vec{w}=(4;-5)\) |
![]() | \(\vec{w}=(-6;9)\) |
![]() | \(\vec{w}=(-5;-14)\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(3;-4)\) và \(\vec{b}=(-1;2)\). Tìm tọa độ vectơ $\vec{v}=\vec{a}+\vec{b}$.
![]() | \(\vec{v}=(-4;6)\) |
![]() | \(\vec{v}=(2;-2)\) |
![]() | \(\vec{v}=(4;-6)\) |
![]() | \(\vec{v}=(-3;-8)\) |
Trong mặt phẳng \(Oxy\), cho hai vectơ \(\vec{a}=(1;-3)\) và \(\vec{b}=(2;5)\). Tính \(\vec{a}\left(\vec{a}+2\vec{b}\right)\).
![]() | \(26\) |
![]() | \(-16\) |
![]() | \(16\) |
![]() | \(36\) |
Trong không gian \(Oxyz\), cho \(\vec{a}=(2;1;3)\), \(\vec{b}=(4;-3;5)\), \(\vec{c}=(-2;4;6)\). Tìm tọa độ của vectơ \(\vec{u}=\vec{a}+2\vec{b}-\vec{c}\).
![]() | \((10;9;6)\) |
![]() | \((12;-9;7)\) |
![]() | \((10;-9;6)\) |
![]() | \((12;-9;6)\) |
Trong không gian \(Oxyz\), cho \(\vec{a}=(2;-3;3)\), \(\vec{b}=(0;2;-1)\), \(\vec{c}=(3;-1;5)\). Tìm tọa độ của vectơ \(\vec{u}=2\vec{a}+3\vec{b}-2\vec{c}\).
![]() | \((10;-2;13)\) |
![]() | \((-2;2;-7)\) |
![]() | \((-2;-2;7)\) |
![]() | \((-2;2;7)\) |
Trong không gian \(Oxyz\) cho hai vectơ \(\vec{x}=(2;1;-3)\) và \(\vec{y}=(1;0;-1)\). Tìm tọa độ của vectơ \(\vec{a}=\vec{x}+2\vec{y}\).
![]() | \(\vec{a}=(4;1;-1)\) |
![]() | \(\vec{a}=(3;1;-4)\) |
![]() | \(\vec{a}=(0;1;-1)\) |
![]() | \(\vec{a}=(4;1;-5)\) |