Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành tâm $I$ và $SA=SC$, $SB=SD$. Đường thẳng nào sau đây vuông góc với mặt phẳng $(ABCD)$?
![]() | $SI$ |
![]() | $SA$ |
![]() | $SB$ |
![]() | $SC$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ có số đo
![]() | $45^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $60^\circ$ |
Cho hình chóp $S.ABC$ có đáy $ABC$ là tam giác đều cạnh $a$, cạnh bên $SA=a\sqrt{3}$ và vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ có số đo
![]() | $60^\circ$ |
![]() | $90^\circ$ |
![]() | $30^\circ$ |
![]() | $45^\circ$ |
Cho hình chóp $S.ABC$ có $SA\perp AB$ và $SA\perp BC$. Khẳng định nào sau đây không đúng?
![]() | $AB\perp BC$ |
![]() | $SA\perp AC$ |
![]() | $SA\perp(ABC)$ |
![]() | $\big(SA,(ABC)\big)=90^\circ$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SC$ và mặt phẳng $(ABC)$ là góc
![]() | $\widehat{SCA}$ |
![]() | $\widehat{SCB}$ |
![]() | $\widehat{SAC}$ |
![]() | $\widehat{ASC}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SB$ và mặt phẳng $(ABC)$ là góc
![]() | $\widehat{SBA}$ |
![]() | $\widehat{SBC}$ |
![]() | $\widehat{SAB}$ |
![]() | $\widehat{ASB}$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SC$ trên mặt phẳng $(ABC)$ là đường thẳng
![]() | $AC$ |
![]() | $BC$ |
![]() | $AB$ |
![]() | $SC$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Hình chiếu vuông góc của $SB$ trên mặt phẳng $(ABC)$ là đường thẳng
![]() | $AB$ |
![]() | $BC$ |
![]() | $SB$ |
![]() | $AC$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Góc giữa đường thẳng $SA$ và mặt phẳng $(ABC)$ có số đo là
![]() | $90^\circ$ |
![]() | $0^\circ$ |
![]() | $180^\circ$ |
![]() | $90$ |
Cho hình chóp $S.ABC$ có cạnh bên $SA$ vuông góc với mặt đáy. Khẳng định nào sau đây không đúng?
![]() | $SB\perp BC$ |
![]() | $SA\perp AB$ |
![]() | $SA\perp AC$ |
![]() | $SA\perp BC$ |
Cho hình chóp đều $S.ABCD$ có chiều cao $a$, $AC=2a$ (tham khảo hình bên).
Khoảng cách từ $B$ đến mặt phẳng $(SCD)$ bằng
![]() | $\dfrac{\sqrt{3}}{3}a$ |
![]() | $\sqrt{2}a$ |
![]() | $\dfrac{2\sqrt{3}}{3}a$ |
![]() | $\dfrac{\sqrt{2}}{2}a$ |
Cho hình chóp $S.ABCD$ có $ABCD$ là hình vuông cạnh $2a$, $SA\perp(ABCD)$ và $2a\sqrt{2}$.
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông và $SA\perp(ABCD)$.
Khẳng định nào sau đây là đúng?
![]() | $BC\perp(SAB)$ |
![]() | $BC\perp(SBD)$ |
![]() | $BC\perp(SCD)$ |
![]() | $BC\perp(SAC)$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình vuông, $SA$ vuông góc mặt đáy. Hình chiếu vuông góc của $SB$ lên $(ABCD)$ là
![]() | $CB$ |
![]() | $DB$ |
![]() | $AB$ |
![]() | $SA$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$ là đường thẳng
![]() | Đi qua điểm $S$ và song song với $AD$ |
![]() | Đi qua điểm $S$ và song song với $AB$ |
![]() | Không tồn tại |
![]() | Đi qua giao điểm $I$ của $AB$ và $CD$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình thang, đáy lớn $AB$. Phát biểu nào không đúng về giao tuyến của hai mặt phẳng $(SAB)$ và $(SCD)$?
![]() | Song song với $CD$ |
![]() | Đi qua điểm $S$ |
![]() | Song song với $AB$ |
![]() | Đi qua giao điểm $I$ của $AB$ và $CD$ |
Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Gọi $N,\,P$ lần lượt là trung điểm của các cạnh $BC,\,AD$; $K$ là giao $BP$ và $AN$. Khi đó $SK$ là giao tuyến của mặt phẳng $(SAN)$ và mặt phẳng nào sau đây?
![]() | $(SPC)$ |
![]() | $(SCD)$ |
![]() | $(SBC)$ |
![]() | $(SBP)$ |
Trong $(\alpha)$, cho tứ giác $ABCD$ có $AB$ cắt $CD$ tại $E$, $AC$ cắt $BD$ tại $F$, $S$ là điểm không thuộc $(\alpha)$. Giao tuyến của $(SAB)$ và $(SCD)$ là
![]() | $AC$ |
![]() | $SD$ |
![]() | $CD$ |
![]() | $SE$ |
Cho hình chóp $S.ABCD$ có các cặp cạnh đối không song song. Gọi $I$ là giao điểm $AB$ và $DC$. Đường thẳng $SI$ là giao tuyến của cặp mặt phẳng nào?
![]() | $(SAD)$ và $(SBC)$ |
![]() | $(SAB)$ và $(SCD)$ |
![]() | $(SAD)$ và $(SCD)$ |
![]() | $(SAC)$ và $(SBD)$ |
Trong mặt phẳng $(\alpha)$, cho tứ giác $ABCD$ có $AB$ cắt $CD$ tại $E$, $AC$ cắt $BD$ tại $F$, $S$ là điểm không thuộc $(\alpha)$. Gọi $M,\,N$ lần lượt là giao điểm của $EF$ với $AD$ và $BC$. Giao tuyến của $(SEF)$ với $(SAD)$ là
![]() | $DN$ |
![]() | $MN$ |
![]() | $SM$ |
![]() | $SN$ |