Chứng minh rằng với mọi số dương \(a\), \(b\) ta đều có $$\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}\geq\sqrt{a}+\sqrt{b}$$
Cho \(a+b\geq0\). Chứng minh rằng $$\dfrac{a+b}{2}\leq\sqrt[3]{\dfrac{a^3+b^3}{2}}$$
Cho các số thực \(a,\,b\). Chứng minh rằng $$(a+b)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\geq4.$$
Cho các số thực $a,\,b$. Chứng minh rằng $$(a+b)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\geq4$$
Chứng minh rằng với mọi số tự nhiên $n\geq2$ ta đều có $$\dfrac{1}{n+1}+\dfrac{1}{n+2}+\cdots+\dfrac{1}{n+n}>\dfrac{13}{24}$$
Chứng minh rằng với mọi số tự nhiên $n\geq2$ ta đều có $$\dfrac{1}{1^2}+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\cdots+\dfrac{1}{n^2}<2-\dfrac{1}{n}$$
Tìm giá trị lớn nhất của hàm số \(f(x)=\sqrt{(2x+3)(5-2x)}\) trên đoạn \(\left[-\dfrac{3}{2};\dfrac{5}{2}\right]\).
Chứng minh rằng $$\dfrac{bc}{a}+\dfrac{ca}{b}+\dfrac{ab}{c}\geq a+b+c$$với \(a,\,b,\,c\geq0\)
Chứng minh rằng $$(1+a)(1+b)(1+c)\geq\left(1+\sqrt[3]{abc}\right)^3$$với \(a,\,b,\,c\geq0\)
Cho hình chóp $S.ABCD$ có $ABCD$ là hình vuông cạnh $2a$, $SA\perp(ABCD)$ và $2a\sqrt{2}$.
Viết phương trình tiếp tuyến $\Delta$ của đồ thị hàm số $y=\sqrt{x}$, biết tiếp tuyến này vuông góc với đường thẳng $d\colon4x+y-1=0$.
Chứng minh rằng với mọi số nguyên dương $n$ thì $7.2^{2n-2}+3^{2n-1}$ chia hết cho $5$.
Chứng minh rằng với mọi số nguyên dương $n$ thì $3^{2n+1}+2^{n+2}$ chia hết cho $7$.