Cho \(A=\{0;1;2;3;4;5;6;7\}\) và \(E=\left\{\overline{a_1a_2a_3a_4}\,|\,a_1,a_2,a_3,a_4\in A,\,a_1\neq0\right\}\). Lấy ngẫu nhiên một phần tử thuộc \(E\). Tính xác suất để phần tử đó là số chia hết cho \(5\).
Từ các chữ số \(\{1;2;3;4;5;6\}\), lập một số bất kì gồm \(3\) chữ số. Tính xác suất để số nhận được chia hết cho \(6\).
Gọi \(A\) là tập hợp các số tự nhiên có \(8\) chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc \(A\). Tính xác suất để số tự nhiên được chọn chia hết cho \(25\).
\(\dfrac{17}{81}\) | |
\(\dfrac{43}{324}\) | |
\(\dfrac{1}{27}\) | |
\(\dfrac{11}{324}\) |
Lấy ngẫu nhiên 1 thẻ từ một hộp chứa 20 thẻ, được đánh số từ 1 đến 20. Tìm xác suất để thẻ được lấy ra là số
Cho tập hợp $A=\left\{0;1;2;3;4;5\right\}$. Gọi $S$ là tập hợp các số có $3$ chữ số khác nhau được lập thành từ các chữ số của tập $A$. Chọn ngẫu nhiên một số từ $S$, tính xác suất để số được chọn có chữ số cuối gấp đôi chữ số đầu.
$\dfrac{1}{5}$ | |
$\dfrac{23}{25}$ | |
$\dfrac{4}{5}$ | |
$\dfrac{2}{25}$ |
Gọi $S$ là tập hợp các số tự nhiên có $9$ chữ số đôi một khác nhau. Chọn ngẫu nhiên một số từ tập $S$. Xác suất để số được chọn có đúng bốn chữ số lẻ sao cho chữ số $0$ luôn đứng giữa hai chữ số lẻ bằng
$\dfrac{5}{542}$ | |
$\dfrac{5}{42}$ | |
$\dfrac{5}{648}$ | |
$\dfrac{5}{54}$ |
Gọi \(S\) là tập hợp tất cả các số tự nhiên có \(4\) chữ số đôi một khác nhau và các chữ số thuộc tập \(\left\{1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9\right\}\). Chọn ngẫu nhiên một số thuộc \(S\), xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng
\(\dfrac{25}{42}\) | |
\(\dfrac{5}{21}\) | |
\(\dfrac{65}{126}\) | |
\(\dfrac{55}{126}\) |
Chọn ngẫu nhiên một số từ tập các số tự nhiên có ba chữ số đôi một khác nhau. Xác suất để số được chọn có tổng các chữ số là chẵn bằng
\(\dfrac{41}{81}\) | |
\(\dfrac{4}{9}\) | |
\(\dfrac{1}{2}\) | |
\(\dfrac{16}{81}\) |
Cho \(A=\{0;1;2;3;4;5;6;7\}\) và \(E=\left\{\overline{a_1a_2a_3a_4}\,|\,a_1,a_2,a_3,a_4\in A,\,a_1\neq0\right\}\). Lấy ngẫu nhiên một phần tử thuộc \(E\). Tính xác suất để phần tử đó là số chia hết cho \(5\).
\(\dfrac{13}{49}\) | |
\(\dfrac{5}{16}\) | |
\(\dfrac{13}{48}\) | |
\(\dfrac{1}{4}\) |
Từ các chữ số \(\{1;2;3;4;5;6\}\), lập một số bất kì gồm \(3\) chữ số. Tính xác suất để số nhận được chia hết cho \(6\).
\(\dfrac{2}{7}\) | |
\(\dfrac{1}{4}\) | |
\(\dfrac{1}{8}\) | |
\(\dfrac{1}{6}\) |
Cho một hộp kín có chứa $3$ bi đỏ, $4$ bi xanh, $5$ bi vàng. Lấy ngẫu nhiên $4$ viên bi. Tính xác suất để $4$ viên bi lấy ra không có bi màu đỏ.
Cho hàm số $f\left(x\right)=x^3-2x^2+mx-3$ . Tìm $m$ để $f'\left(x\right)< 0$ với mọi $x\in\left(0;2\right)$.
Chứng minh rằng với mọi số nguyên dương $n$ thì $7.2^{2n-2}+3^{2n-1}$ chia hết cho $5$.
Chứng minh rằng với mọi số nguyên dương $n$ thì $3^{2n+1}+2^{n+2}$ chia hết cho $7$.
Chứng minh rằng với mọi $n\in\mathbb{N}^*$ ta luôn có $4^n+15n-1$ chia hết cho $9$.
Một hộp có \(5\) viên bi xanh, \(6\) viên bi đỏ và \(7\) viên bi vàng. Chọn ngẫu nhiên \(5\) viên bi trong hộp. Tính xác suất để \(5\) viên bi được chọn có đủ \(3\) màu và số bi đỏ bằng với số bi vàng.
Một hộp chứa \(18\) quả cầu gồm \(8\) quả cầu màu xanh và \(10\) quả cầu màu trắng. Chọn ngẫu nhiên \(2\) quả cầu từ hộp đó. Tính xác suất để chọn được \(2\) quả cầu cùng màu.
Một bộ đề có \(10\) câu hỏi trắc nghiệm, trong đó có \(6\) câu Đại số và \(4\) câu Hình học. Bạn Nam bốc thăm chọn ngẫu nhiên \(3\) câu từ bộ đề. Hỏi xác suất để trong số ba câu bạn Nam chọn được có ít nhất một câu Hình học.
Có hai thùng đựng rượu Bầu Đá, một loại rượu nổi tiếng của thị xã An Nhơn, tỉnh Bình Định. Thùng thứ nhất đựng \(10\) chai gồm \(6\) chai rượu loại một và \(4\) chai rượu loại hai. Thùng thứ hai đựng \(8\) chai gồm \(5\) chai rượu loại một và \(3\) chai rượu loại hai. Lấy ngẫu nhiên mỗi thùng một chai, tính xác suất để lấy được ít nhất một chai rượu loại một. Biết rằng các chai rượu giống nhau về hình thức (rượu loại một và loại hai chỉ khác nhau về nồng độ cồn) và khả năng được chọn là như nhau.